Skip to main content

A large language model serving platform.

Project description

LangPort

GitHub Repo stars License

architecture

LangPort is a open-source large language model serving platform. Our goal is to build a super fast LLM inference service.

This project is inspired by lmsys/fastchat, we hope that the serving platform is lightweight and fast, but fastchat includes other features such as training and evaluation make it complicated.

The core features include:

  • Huggingface transformers support.
  • ggml (llama.cpp) support.
  • A distributed serving system for state-of-the-art models.
  • Streaming generation support with various decoding strategies.
  • Batch inference for higher throughput.
  • Support for encoder-only, decoder-only and encoder-decoder models.
  • OpenAI-compatible RESTful APIs.
  • FauxPilot-compatible RESTful APIs.
  • HuggingFace-compatible RESTful APIs.
  • Tabby-compatible RESTful APIs.

Support Model Architectures

  • LLaMa, LLaMa2, GLM, Bloom, OPT, GPT2, GPT Neo, GPT Big Code and so on.

Tested Models

  • NingYu, LLaMa, LLaMa2, Vicuna, ChatGLM, ChatGLM2, Falcon, Starcoder, WizardLM, InternLM, OpenBuddy, FireFly, CodeGen, Phoenix, RWKV, StableLM and so on.

News

  • [2024/01/13] Introduce the ChatProto.
  • [2023/08/04] Dynamic batch inference.
  • [2023/07/16] Support int4 quantization.
  • [2023/07/13] Support generation logprobs parameter.
  • [2023/06/18] Add ggml (llama.cpp gpt.cpp starcoder.cpp etc.) worker support.
  • [2023/06/09] Add LLama.cpp worker support.
  • [2023/06/01] Add HuggingFace Bert embedding worker support.
  • [2023/06/01] Add HuggingFace text generation API support.
  • [2023/06/01] Add tabby API support.
  • [2023/05/23] Add chat throughput test script.
  • [2023/05/22] New distributed architecture.
  • [2023/05/14] Batch inference supported.
  • [2023/05/10] Langport project started.

Install

Method 1: With pip

pip install langport

or:

pip install git+https://github.com/vtuber-plan/langport.git 

If you need ggml generation worker, use this command:

pip install langport[ggml]

If you want to use GPU:

CT_CUBLAS=1 pip install langport[ggml]

Method 2: From source

  1. Clone this repository
git clone https://github.com/vtuber-plan/langport.git
cd langport
  1. Install the Package
pip install --upgrade pip
pip install -e .

Quick start

It is simple to start a local chat API service:

First, start a worker process in the terminal:

python -m langport.service.server.generation_worker --port 21001 --model-path <your model path>

Then, start a API service in another terminal:

python -m langport.service.gateway.openai_api

Now, you can use the inference API by openai protocol.

Start the server

It is simple to start a single node chat API service:

python -m langport.service.server.generation_worker --port 21001 --model-path <your model path>
python -m langport.service.gateway.openai_api

If you need the embeddings API or other features, you can deploy a distributed inference cluster:

python -m langport.service.server.dummy_worker --port 21001
python -m langport.service.server.generation_worker --model-path <your model path> --neighbors http://localhost:21001
python -m langport.service.server.embedding_worker --model-path <your model path> --neighbors http://localhost:21001
python -m langport.service.gateway.openai_api --controller-address http://localhost:21001

In practice, the gateway can connect to any node to distribute inference tasks:

python -m langport.service.server.dummy_worker --port 21001
python -m langport.service.server.generation_worker --port 21002 --model-path <your model path> --neighbors http://localhost:21001
python -m langport.service.server.generation_worker --port 21003 --model-path <your model path> --neighbors http://localhost:21001 http://localhost:21002
python -m langport.service.server.generation_worker --port 21004 --model-path <your model path> --neighbors http://localhost:21001 http://localhost:21003
python -m langport.service.server.generation_worker --port 21005 --model-path <your model path> --neighbors http://localhost:21001 http://localhost:21004
python -m langport.service.gateway.openai_api --controller-address http://localhost:21003 # 21003 is OK!
python -m langport.service.gateway.openai_api --controller-address http://localhost:21002 # Any worker is also OK!

Run text generation with multi GPUs:

python -m langport.service.server.generation_worker --port 21001 --model-path <your model path> --gpus 0,1 --num-gpus 2
python -m langport.service.gateway.openai_api

Run text generation with ggml worker:

python -m langport.service.server.ggml_generation_worker --port 21001 --model-path <your model path> --gpu-layers <num layer to gpu (resize this for your VRAM)>

Run OpenAI forward server:

python -m langport.service.server.chatgpt_generation_worker --port 21001 --api-url <url> --api-key <key>

License

langport is released under the Apache Software License.

See also

Star History

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langport-0.3.10.tar.gz (63.8 kB view details)

Uploaded Source

Built Distribution

langport-0.3.10-py3-none-any.whl (102.5 kB view details)

Uploaded Python 3

File details

Details for the file langport-0.3.10.tar.gz.

File metadata

  • Download URL: langport-0.3.10.tar.gz
  • Upload date:
  • Size: 63.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for langport-0.3.10.tar.gz
Algorithm Hash digest
SHA256 12fe1a073f927070cc84258a359073913bfbf28351432fb2a9dc0139c5859be1
MD5 3b119042f4502729cee3c2bfde766de6
BLAKE2b-256 f843ddfe63b74ddbf89e06ff84bd7ca75ddf6c73a99ff1ec08a8a1190c8b6d6d

See more details on using hashes here.

File details

Details for the file langport-0.3.10-py3-none-any.whl.

File metadata

  • Download URL: langport-0.3.10-py3-none-any.whl
  • Upload date:
  • Size: 102.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for langport-0.3.10-py3-none-any.whl
Algorithm Hash digest
SHA256 04046c0f8dadc160925c8b9b94283bb10e7803d2e77ab8264a76034cc9582e2a
MD5 53e4acb3e62b383c3904ea12bab2776a
BLAKE2b-256 6889f2c364236d58609f290418f1f1aa91644fa399b4a2aa4259311ffa2ebbc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page