Skip to main content

Python SDK for LangTrace

Project description

Langtrace

Open Source & Open Telemetry(OTEL) Observability for LLM applications

Static Badge Static Badge Static Badge Static Badge


Langtrace is an open source observability software which lets you capture, debug and analyze traces and metrics from all your applications that leverages LLM APIs, Vector Databases and LLM based Frameworks.

Open Telemetry Support

The traces generated by Langtrace adhere to Open Telemetry Standards(OTEL). We are developing semantic conventions for the traces generated by this project. You can checkout the current definitions in this repository. Note: This is an ongoing development and we encourage you to get involved and welcome your feedback.


Langtrace Cloud ☁️

To use the managed SaaS version of Langtrace, follow the steps below:

  1. Sign up by going to this link.
  2. Create a new Project after signing up. Projects are containers for storing traces and metrics generated by your application. If you have only one application, creating 1 project will do.
  3. Generate an API key by going inside the project.
  4. In your application, install the Langtrace SDK and initialize it with the API key you generated in the step 3.
  5. The code for installing and setting up the SDK is shown below

Getting Started

Get started by adding simply three lines to your code!

pip install langtrace-python-sdk
from langtrace_python_sdk import langtrace # Must precede any llm module imports
langtrace.init(api_key=<your_api_key>)

OR

from langtrace_python_sdk import langtrace # Must precede any llm module imports
langtrace.init() # LANGTRACE_API_KEY as an ENVIRONMENT variable

FastAPI Quick Start

Initialize FastAPI project and add this inside the main.py file

from fastapi import FastAPI
from langtrace_python_sdk import langtrace
from openai import OpenAI

langtrace.init()
app = FastAPI()
client = OpenAI()

@app.get("/")
def root():
    client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": "Say this is a test three times"}],
        stream=False,
    )
    return {"Hello": "World"}

Django Quick Start

Initialize django project and add this inside the __init.py__ file

from langtrace_python_sdk import langtrace
from openai import OpenAI


langtrace.init()
client = OpenAI()

client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Say this is a test three times"}],
    stream=False,
)

Flask Quick Start

Initialize flask project and this inside app.py file

from flask import Flask
from langtrace_python_sdk import langtrace
from openai import OpenAI

langtrace.init()
client = OpenAI()
app = Flask(__name__)


@app.route("/")
def main():
    client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": "Say this is a test three times"}],
        stream=False,
    )
    return "Hello, World!"

Langtrace Self Hosted

Get started by adding simply two lines to your code and see traces being logged to the console!

pip install langtrace-python-sdk
from langtrace_python_sdk import langtrace # Must precede any llm module imports
langtrace.init(write_spans_to_console=True)

Langtrace self hosted custom exporter

Get started by adding simply three lines to your code and see traces being exported to your remote location!

pip install langtrace-python-sdk
from langtrace_python_sdk import langtrace # Must precede any llm module imports
langtrace.init(custom_remote_exporter=<your_exporter>, batch=<True or False>)

Additional Customization

  • @with_langtrace_root_span - this decorator is designed to organize and relate different spans, in a hierarchical manner. When you're performing multiple operations that you want to monitor together as a unit, this function helps by establishing a "parent" (LangtraceRootSpan or whatever is passed to name) span. Then, any calls to the LLM APIs made within the given function (fn) will be considered "children" of this parent span. This setup is especially useful for tracking the performance or behavior of a group of operations collectively, rather than individually.
from langtrace_python_sdk.utils.with_root_span import with_langtrace_root_span

@with_langtrace_root_span()
def example():
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": "Say this is a test three times"}],
        stream=False,
    )
    return response
  • with_additional_attributes - this function is designed to enhance the traces by adding custom attributes to the current context. These custom attributes provide extra details about the operations being performed, making it easier to analyze and understand their behavior.
from langtrace_python_sdk.utils.with_root_span import (
    with_langtrace_root_span,
    with_additional_attributes,
)

@with_additional_attributes({"user.id": "1234", "user.feedback.rating": 1})
def api_call1():
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": "Say this is a test three times"}],
        stream=False,
    )
    return response


@with_additional_attributes({"user.id": "5678", "user.feedback.rating": -1})
def api_call2():
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": "Say this is a test three times"}],
        stream=False,
    )
    return response


@with_langtrace_root_span()
def chat_completion():
   api_call1()
   api_call2()
  • get_prompt_from_registry - this function is designed to fetch the desired prompt from the Prompt Registry. You can pass two options for filtering prompt_version & variables.
from langtrace_python_sdk import get_prompt_from_registry

prompt = get_prompt_from_registry(<Registry ID>, options={"prompt_version": 1, "variables": {"foo": "bar"} })

Supported integrations

Langtrace automatically captures traces from the following vendors:

Vendor Type Typescript SDK Python SDK
OpenAI LLM :white_check_mark: :white_check_mark:
Anthropic LLM :white_check_mark: :white_check_mark:
Azure OpenAI LLM :white_check_mark: :white_check_mark:
Cohere LLM :white_check_mark: :white_check_mark:
Groq LLM :x: :white_check_mark:
Langchain Framework :x: :white_check_mark:
LlamaIndex Framework :white_check_mark: :white_check_mark:
Pinecone Vector Database :white_check_mark: :white_check_mark:
ChromaDB Vector Database :white_check_mark: :white_check_mark:
QDrant Vector Database :x: :white_check_mark:

Feature Requests and Issues


Contributions

We welcome contributions to this project. To get started, fork this repository and start developing. To get involved, join our Discord workspace.


Security

To report security vulnerabilites, email us at security@scale3labs.com. You can read more on security here.


License

  • Langtrace application(this repository) is licensed under the AGPL 3.0 License. You can read about this license here.
  • Langtrace SDKs are licensed under the Apache 2.0 License. You can read about this license here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langtrace_python_sdk-2.0.13.tar.gz (964.4 kB view details)

Uploaded Source

Built Distribution

langtrace_python_sdk-2.0.13-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file langtrace_python_sdk-2.0.13.tar.gz.

File metadata

  • Download URL: langtrace_python_sdk-2.0.13.tar.gz
  • Upload date:
  • Size: 964.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for langtrace_python_sdk-2.0.13.tar.gz
Algorithm Hash digest
SHA256 846817e9c9e01cb3220e044d9340e22e51002722c60215b071c6ce07512a55dc
MD5 1e2a6c036221e3064423bdeaa1eefaf1
BLAKE2b-256 10b55940ab541894e1ee8dbdb281ddbb85d4da042df8add7b53259aa2f1a5444

See more details on using hashes here.

File details

Details for the file langtrace_python_sdk-2.0.13-py3-none-any.whl.

File metadata

File hashes

Hashes for langtrace_python_sdk-2.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 2f71c0f276e95147bf220d079e313be7ec788ea0500660f357f63e84eb954dbe
MD5 03fa9f57428b54ee3c9fbd773b85b7f4
BLAKE2b-256 415b845ac6bd486b408389743d447fb03c3d6eebabb614ddbc35c9f76894b292

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page