Skip to main content

LangVAE: Large Language VAEs made simple

Project description

LangVAE: Large Language VAEs made simple

LangVAE is a Python library for training and running language models using Variational Autoencoders (VAEs). It provides an easy-to-use interface to train VAEs on text data, allowing users to customize the model architecture, loss function, and training parameters.

Installation

To install LangVAE, simply run:

pip install langvae

This will install all necessary dependencies and set up the package for use in your Python projects.

Usage

Here's a basic example of how to train a VAE on text data using LangVAE:

from pythae.models.vae import VAEConfig
from langvae import LangVAE
from langvae.encoders import SentenceEncoder
from langvae.decoders import SentenceDecoder
from langvae.data_conversion.tokenization import TokenizedDataSet
from langvae.pipelines import LanguageTrainingPipeline
from langvae.trainers import CyclicalScheduleKLThresholdTrainerConfig
from saf_datasets import EntailmentBankDataSet

DEVICE = "cuda"
LATENT_SIZE = 32
MAX_SENT_LEN = 32

# Load pre-trained sentence encoder and decoder models.
decoder = SentenceDecoder("gpt2", LATENT_SIZE, MAX_SENT_LEN, device=DEVICE)
encoder = SentenceEncoder("bert-base-cased", LATENT_SIZE, decoder.tokenizer, device=DEVICE)

# Select explanatory sentences from the EntailmentBank dataset.
dataset = [
    sent for sent in EntailmentBankDataSet()
    if (sent.annotations["type"] == "answer" or 
        sent.annotations["type"].startswith("context"))
]

# Set training and evaluation datasets with auto tokenization.
eval_size = int(0.1 * len(dataset))
train_dataset = TokenizedDataSet(dataset[:-eval_size], decoder.tokenizer, decoder.max_len)
eval_dataset = TokenizedDataSet(dataset[-eval_size:], decoder.tokenizer, decoder.max_len)


# Define VAE model configuration
model_config = VAEConfig(
    input_dim=(train_dataset[0]["data"].shape[-2], train_dataset[0]["data"].shape[-1]),
    latent_dim=LATENT_SIZE
)

# Initialize LangVAE model
model = LangVAE(model_config, encoder, decoder)

# Train VAE on explanatory sentences
training_config = CyclicalScheduleKLThresholdTrainerConfig(
    output_dir='expl_vae',
    num_epochs=5,
    learning_rate=1e-4,
    per_device_train_batch_size=50,
    per_device_eval_batch_size=50,
    steps_saving=1,
    optimizer_cls="AdamW",
    scheduler_cls="ReduceLROnPlateau",
    scheduler_params={"patience": 5, "factor": 0.5},
    max_beta=1.0,
    n_cycles=40,
    target_kl=2.0
)

pipeline = LanguageTrainingPipeline(
    training_config=training_config,
    model=model
)

pipeline(
    train_data=train_dataset,
    eval_data=eval_dataset
)

This example loads pre-trained encoder and decoder models, defines a VAE model configuration, initializes the LangVAE model, and trains it on text data using a custom training pipeline.

License

LangVAE is licensed under the GPLv3 License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langvae-0.3.0.tar.gz (28.5 kB view details)

Uploaded Source

Built Distribution

langvae-0.3.0-py3-none-any.whl (36.8 kB view details)

Uploaded Python 3

File details

Details for the file langvae-0.3.0.tar.gz.

File metadata

  • Download URL: langvae-0.3.0.tar.gz
  • Upload date:
  • Size: 28.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for langvae-0.3.0.tar.gz
Algorithm Hash digest
SHA256 78d29887f0906084560f588daf56d652f5bf8372316a73c74ad4c84e2b3f36be
MD5 8d09002c8346925bad31c1c9fdcacd92
BLAKE2b-256 137053652031eb83d673b995bcf3ba193a206cd9047454feef19ff1c484bec36

See more details on using hashes here.

File details

Details for the file langvae-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: langvae-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 36.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for langvae-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7944595e5585240f624e7ebf8fe9ac7297da9c0485756ca525dcb09429b3bb93
MD5 9b318f76436e5e8398dca167abac5c79
BLAKE2b-256 aa2c6f8dc5d4d13cb2643605197b4305b4b804731cca108e5604b0779eb4116f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page