Skip to main content

LangVAE: Large Language VAEs made simple

Project description

LangVAE: Large Language VAEs made simple

LangVAE is a Python library for training and running language models using Variational Autoencoders (VAEs). It provides an easy-to-use interface to train VAEs on text data, allowing users to customize the model architecture, loss function, and training parameters.

Installation

To install LangVAE, simply run:

pip install langvae

This will install all necessary dependencies and set up the package for use in your Python projects.

Usage

Here's a basic example of how to train a VAE on text data using LangVAE:

from pythae.models.vae import VAEConfig
from langvae import LangVAE
from langvae.encoders import SentenceEncoder
from langvae.decoders import SentenceDecoder
from langvae.data_conversion.tokenization import TokenizedDataSet
from langvae.pipelines import LanguageTrainingPipeline
from langvae.trainers import CyclicalScheduleKLThresholdTrainerConfig
from saf_datasets import EntailmentBankDataSet

DEVICE = "cuda"
LATENT_SIZE = 32
MAX_SENT_LEN = 32

# Load pre-trained sentence encoder and decoder models.
decoder = SentenceDecoder("gpt2", LATENT_SIZE, MAX_SENT_LEN, device=DEVICE)
encoder = SentenceEncoder("bert-base-cased", LATENT_SIZE, decoder.tokenizer, device=DEVICE)

# Select explanatory sentences from the EntailmentBank dataset.
dataset = [
    sent for sent in EntailmentBankDataSet()
    if (sent.annotations["type"] == "answer" or 
        sent.annotations["type"].startswith("context"))
]

# Set training and evaluation datasets with auto tokenization.
eval_size = int(0.1 * len(dataset))
train_dataset = TokenizedDataSet(dataset[:-eval_size], decoder.tokenizer, decoder.max_len)
eval_dataset = TokenizedDataSet(dataset[-eval_size:], decoder.tokenizer, decoder.max_len)


# Define VAE model configuration
model_config = VAEConfig(
    input_dim=(train_dataset[0]["data"].shape[-2], train_dataset[0]["data"].shape[-1]),
    latent_dim=LATENT_SIZE
)

# Initialize LangVAE model
model = LangVAE(model_config, encoder, decoder)

# Train VAE on explanatory sentences
training_config = CyclicalScheduleKLThresholdTrainerConfig(
    output_dir='expl_vae',
    num_epochs=5,
    learning_rate=1e-4,
    per_device_train_batch_size=50,
    per_device_eval_batch_size=50,
    steps_saving=1,
    optimizer_cls="AdamW",
    scheduler_cls="ReduceLROnPlateau",
    scheduler_params={"patience": 5, "factor": 0.5},
    max_beta=1.0,
    n_cycles=40,
    target_kl=2.0
)

pipeline = LanguageTrainingPipeline(
    training_config=training_config,
    model=model
)

pipeline(
    train_data=train_dataset,
    eval_data=eval_dataset
)

This example loads pre-trained encoder and decoder models, defines a VAE model configuration, initializes the LangVAE model, and trains it on text data using a custom training pipeline.

License

LangVAE is licensed under the GPLv3 License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langvae-0.5.2.tar.gz (30.6 kB view details)

Uploaded Source

Built Distribution

langvae-0.5.2-py3-none-any.whl (38.8 kB view details)

Uploaded Python 3

File details

Details for the file langvae-0.5.2.tar.gz.

File metadata

  • Download URL: langvae-0.5.2.tar.gz
  • Upload date:
  • Size: 30.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for langvae-0.5.2.tar.gz
Algorithm Hash digest
SHA256 5c093d7bd651116029e4a5588f6d87a5f17bbba879e7660b65dbd6c8bca50943
MD5 f097721b494a033b04e2edfbb769cccd
BLAKE2b-256 7df1850d038f411af26add1d0ae97e09cb3fcba3f586cf80aceba91df406a9ca

See more details on using hashes here.

File details

Details for the file langvae-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: langvae-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 38.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for langvae-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2fb03d447913163cd867248b662527145d31d25bed61313ec285d74bc98d9835
MD5 c8c6f82bffaac3d4d7e32c8ea7b096b7
BLAKE2b-256 2628cc37a49cbf99ad8e87a5d26b7025da15e0bc451dd9547e75c1330f4ebb28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page