Python client for Lantern
Project description
Python Client for Lantern
Install
pip install lantern-client
Basic usage
DB_URL="postgresql://postgres@localhost:5432/lantern"
client = SyncClient(url=DB_URL, table_name="small_world", dimensions=3, distance_type="l2sq", m=12, ef=64, ef_construction=64)
try:
client.drop()
except:
pass
client.create_table()
client.bulk_insert([
("1", [0,0,0], { "name": "a" }),
("2", [0,1,0], { "name": "b" }),
("3", [0,0,1], { "name": "c" })
])
client.create_index()
# Select specific fields
vec_by_id = client.get_by_id(id="1", select_fields=["id", "metadata"])
assert(vec_by_id.embedding == None)
# Get by id
vec_by_id = client.get_by_id("1")
assert(vec_by_id.id == "1")
# Get by ids
vectors_by_ids = client.get_by_ids(["1", "3"])
assert(len(vectors_by_ids) == 2)
assert(vectors_by_ids[0].id == "1")
assert(vectors_by_ids[1].id == "3")
# Insert one
client.upsert(("4", [1,0,0], { "name": "d" }))
# Update
client.update_by_id(id="4", metadata={ "name": "4" })
# Get row count
row_count = client.count()
assert(row_count == 4)
vec_by_id = client.get_by_id(id="4", select_fields=["id", "embedding", "metadata"])
assert(vec_by_id.metadata.name == "4")
vectors = client.search(query_id="4")
assert(len(vectors) == row_count)
assert(vectors[0].id == "4")
assert(vectors[0].distance == 0)
vectors = client.search(query_embedding=vec_by_id.embedding, limit=2, filter={"name": "a"}, select_fields=["id"])
assert(len(vectors) == 1)
assert(vectors[0].id == "1")
assert(vectors[0].metadata == None)
assert(vectors[0].embedding == None)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file lantern_client-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: lantern_client-0.0.1-py3-none-any.whl
- Upload date:
- Size: 9.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4084cd9dd26680016d0d625d436b1e4dc45a110f75314bbee933985eb4ef30bc |
|
MD5 | ff71fe00c40173357524000640413589 |
|
BLAKE2b-256 | 978213a7fadf9e6e158bc8ef8c36f2c7afea36906ce183a3067093258ab94bed |