Skip to main content

Pinecone compatiable client for Lantern

Project description

Pinecone-API-Compatible Lantern Client

Install

pip install lantern-pinecone

Sync from Pinecone to Lantern

import lantern_pinecone
from getpass import getpass

lantern_pinecone.init('postgres://postgres@localhost:5432')

pinecone_ids = list(map(lambda x: str(x), range(100000)))

index = lantern_pinecone.create_from_pinecone(
        api_key=getpass("Pinecone API Key"),
        environment="us-east-1-aws",
        index_name="sift100k",
        namespace="",
        pinecone_ids=pinecone_ids,
        recreate=True,
        create_lantern_index=True)

index.describe_index_stats()

index.query(top_k=10, id='45500', namespace="")

NOTE: If you pass create_lantern_index=False only data will be copied under the table of your index name (in this example sift100k) and you can create an index later externally. Without the index most of the index operations will not be accessible via this client.

Extract Metadata Fields

When copying from Pinecone we create a table in this structure: sql (id TEXT, embedding REAL[], metadata jsonb) If you are planning to use the index with raw sql clients, you may want to extract metadata into separate columns, so you could have more complex/nice looking queries over your metadata fields. So if our metadata has this shape { "title": string, "description": string }, we can extract it using this query:

BEGIN;
ALTER TABLE sift100k
ADD COLUMN title TEXT,
ADD COLUMN description TEXT;

-- Update the new columns with data extracted from the JSONB column
UPDATE sift100k
SET
  title = metadata->>'title',
  description = metadata->>'description';


-- Optionally drop the metadata column
ALTER TABLE sift100k DROP COLUMN metadata;

COMMIT;

After doing this your index will most likely be uncomaptible with this python client, and you should use it via raw sql client like psycopg2

Index operations

import os
import lantern_pinecone
import pandas as pd

LANTERN_DB_URL = os.environ.get('LANTERN_DB_URL') or 'postgres://postgres@localhost:5432'
lantern_pinecone.init(LANTERN_DB_URL)

# Giving our index a name
index_name = "hello-lantern"

# Delete the index, if an index of the same name already exists
if index_name in lantern_pinecone.list_indexes():
    lantern_pinecone.delete_index(index_name)


import time

dimensions = 3
lantern_pinecone.create_index(name=index_name, dimension=dimensions, metric="cosine")
index = lantern_pinecone.Index(index_name=index_name)


df = pd.DataFrame(
    data={
        "id": ["A", "B"],
        "vector": [[1., 1., 1.], [1., 2., 3.]]
    })

# Insert vectors
index.upsert(vectors=zip(df.id, df.vector))

index.describe_index_stats()

index.query(
    vector=[2., 2., 2.],
    top_k=5,
    include_values=True) # returns top_k matches


lantern_pinecone.delete_index(index_name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lantern_pinecone-0.0.8.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

lantern_pinecone-0.0.8-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file lantern_pinecone-0.0.8.tar.gz.

File metadata

  • Download URL: lantern_pinecone-0.0.8.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for lantern_pinecone-0.0.8.tar.gz
Algorithm Hash digest
SHA256 cbe81f10ee84fcb747d378e0abc3e47a9531b9b3e24098c0640a2be094518abe
MD5 4e845d744e0fda7df77ba01687a07da7
BLAKE2b-256 d939afa96d5716764abced628a15fbba232f13ef2d8f2f4a716d18f0d2609d92

See more details on using hashes here.

Provenance

The following attestation bundles were made for lantern_pinecone-0.0.8.tar.gz:

Publisher: publish.yml on lanterndata/lantern-python

Attestations:

File details

Details for the file lantern_pinecone-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for lantern_pinecone-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 0e238abc5296e1f7f481f3a87110143fcd925ba8fb64a298681902b05d427526
MD5 21cbc3c800e2afd792747d24923bdae8
BLAKE2b-256 bb1e8f692b6dfd64f5cecec03a3b99aa5680f06c8408f009d6872245afd388ac

See more details on using hashes here.

Provenance

The following attestation bundles were made for lantern_pinecone-0.0.8-py3-none-any.whl:

Publisher: publish.yml on lanterndata/lantern-python

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page