Skip to main content

Pinecone compatiable client for Lantern

Project description

Lantern client compatible with Pinecone API

Install

pip install lantern-pinecone

Sync from Pinecone to Lantern

import lantern_pinecone
from getpass import getpass

lantern_pinecone.init('postgres://postgres@localhost:5432')

pinecone_ids = list(map(lambda x: str(x), range(100000)))

index = lantern_pinecone.create_from_pinecone(
        api_key=getpass("Pinecone API Key"),
        environment="us-east-1-aws",
        index_name="sift100k",
        namespace="",
        pinecone_ids=pinecone_ids,
        recreate=True,
        create_lantern_index=True)

index.describe_index_stats()

index.query(top_k=10, id='45500', namespace="")

NOTE: If you pass create_lantern_index=False only data will be copied under the table of your index name (in this example sift100k) and you can create an index later externally. Without the index most of the index operations will not be accessible via this client.

Extract Metadata Fields

When copying from Pinecone we create a table in this structure: sql (id TEXT, embedding REAL[], metadata jsonb) If you are planning to use the index with raw sql clients, you may want to extract metadata into separate columns, so you could have more complex/nice looking queries over your metadata fields. So if our metadata has this shape { "title": string, "description": string }, we can extract it using this query:

BEGIN;
ALTER TABLE sift100k
ADD COLUMN title TEXT,
ADD COLUMN description TEXT;

-- Update the new columns with data extracted from the JSONB column
UPDATE sift100k
SET
  title = metadata->>'title',
  description = metadata->>'description';


-- Optionally drop the metadata column
ALTER TABLE sift100k DROP COLUMN metadata;

COMMIT;

After doing this your index will most likely be uncomaptible with this python client, and you should use it via raw sql client like psycopg2

Index operations

import os
import lantern_pinecone
import pandas as pd

LANTERN_DB_URL = os.environ.get('LANTERN_DB_URL') or 'postgres://postgres@localhost:5432'
lantern_pinecone.init(LANTERN_DB_URL)

# Giving our index a name
index_name = "hello-lantern"

# Delete the index, if an index of the same name already exists
if index_name in lantern_pinecone.list_indexes():
    lantern_pinecone.delete_index(index_name)


import time

dimensions = 3
lantern_pinecone.create_index(name=index_name, dimension=dimensions, metric="cosine")
index = lantern_pinecone.Index(index_name=index_name)


df = pd.DataFrame(
    data={
        "id": ["A", "B"],
        "vector": [[1., 1., 1.], [1., 2., 3.]]
    })

# Insert vectors
index.upsert(vectors=zip(df.id, df.vector))

index.describe_index_stats()

index.query(
    vector=[2., 2., 2.],
    top_k=5,
    include_values=True) # returns top_k matches


lantern_pinecone.delete_index(index_name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lantern-pinecone-0.0.2.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

lantern_pinecone-0.0.2-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file lantern-pinecone-0.0.2.tar.gz.

File metadata

  • Download URL: lantern-pinecone-0.0.2.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for lantern-pinecone-0.0.2.tar.gz
Algorithm Hash digest
SHA256 8bec89df5d830f833f3c0e372e93e3f51b4b9a7903dbad5ed03c79bdc803628e
MD5 1945c37b06816a4507cb72250256d760
BLAKE2b-256 67410223715d53f9d71e023af6665aae4654d777d93042a90808dc1b380bf851

See more details on using hashes here.

File details

Details for the file lantern_pinecone-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for lantern_pinecone-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a44cbb03349697dbb1d6e6a94e563d2af8760a910602c70a1d76eeb20b016656
MD5 95a54c07d404916b54c560faba985959
BLAKE2b-256 adef8644c5aa850b20b2a33f95d86c5190f59d4b83db6cdcd4e745fa3661c2a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page