Skip to main content

Pinecone compatiable client for Lantern

Project description

Lantern client compatible with Pinecone API

Install

pip install lantern-pinecone

Sync from Pinecone to Lantern

import lantern_pinecone
from getpass import getpass

lantern_pinecone.init('postgres://postgres@localhost:5432')

pinecone_ids = list(map(lambda x: str(x), range(100000)))

index = lantern_pinecone.create_from_pinecone(
        api_key=getpass("Pinecone API Key"),
        environment="us-east-1-aws",
        index_name="sift100k",
        namespace="",
        pinecone_ids=pinecone_ids,
        recreate=True,
        create_lantern_index=True)

index.describe_index_stats()

index.query(top_k=10, id='45500', namespace="")

NOTE: If you pass create_lantern_index=False only data will be copied under the table of your index name (in this example sift100k) and you can create an index later externally. Without the index most of the index operations will not be accessible via this client.

Extract Metadata Fields

When copying from Pinecone we create a table in this structure: sql (id TEXT, embedding REAL[], metadata jsonb) If you are planning to use the index with raw sql clients, you may want to extract metadata into separate columns, so you could have more complex/nice looking queries over your metadata fields. So if our metadata has this shape { "title": string, "description": string }, we can extract it using this query:

BEGIN;
ALTER TABLE sift100k
ADD COLUMN title TEXT,
ADD COLUMN description TEXT;

-- Update the new columns with data extracted from the JSONB column
UPDATE sift100k
SET
  title = metadata->>'title',
  description = metadata->>'description';


-- Optionally drop the metadata column
ALTER TABLE sift100k DROP COLUMN metadata;

COMMIT;

After doing this your index will most likely be uncomaptible with this python client, and you should use it via raw sql client like psycopg2

Index operations

import os
import lantern_pinecone
import pandas as pd

LANTERN_DB_URL = os.environ.get('LANTERN_DB_URL') or 'postgres://postgres@localhost:5432'
lantern_pinecone.init(LANTERN_DB_URL)

# Giving our index a name
index_name = "hello-lantern"

# Delete the index, if an index of the same name already exists
if index_name in lantern_pinecone.list_indexes():
    lantern_pinecone.delete_index(index_name)


import time

dimensions = 3
lantern_pinecone.create_index(name=index_name, dimension=dimensions, metric="cosine")
index = lantern_pinecone.Index(index_name=index_name)


df = pd.DataFrame(
    data={
        "id": ["A", "B"],
        "vector": [[1., 1., 1.], [1., 2., 3.]]
    })

# Insert vectors
index.upsert(vectors=zip(df.id, df.vector))

index.describe_index_stats()

index.query(
    vector=[2., 2., 2.],
    top_k=5,
    include_values=True) # returns top_k matches


lantern_pinecone.delete_index(index_name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lantern_pinecone-0.0.5.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

lantern_pinecone-0.0.5-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file lantern_pinecone-0.0.5.tar.gz.

File metadata

  • Download URL: lantern_pinecone-0.0.5.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for lantern_pinecone-0.0.5.tar.gz
Algorithm Hash digest
SHA256 3a514a60626cdf8590358ef96d809c3a5f8c6f2264f7e3132377294b8dbf0f61
MD5 efb26bb3a8bb1f0cd9587fc54153a2b3
BLAKE2b-256 76116475e875e4e8e3f1a597e870c63213761385cf311fa2f66909c2f50c574b

See more details on using hashes here.

File details

Details for the file lantern_pinecone-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for lantern_pinecone-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 cf49e46a3a955c06916d9c09ab25f3fb36f580fe117694c154e048bae1bb12c9
MD5 c6f4747bf37aca6829e57a104e16d6e1
BLAKE2b-256 36255217895e5491d80fb0e503919a89b5a11db8a24b7630dda7a919323da895

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page