Pinecone compatiable client for Lantern
Project description
Lantern client compatible with Pinecone API
Install
pip install lantern-pinecone
Sync from Pinecone to Lantern
import lantern_pinecone
from getpass import getpass
lantern_pinecone.init('postgres://postgres@localhost:5432')
pinecone_ids = list(map(lambda x: str(x), range(100000)))
index = lantern_pinecone.create_from_pinecone(
api_key=getpass("Pinecone API Key"),
environment="us-east-1-aws",
index_name="sift100k",
namespace="",
pinecone_ids=pinecone_ids,
recreate=True,
create_lantern_index=True)
index.describe_index_stats()
index.query(top_k=10, id='45500', namespace="")
NOTE: If you pass
create_lantern_index=False
only data will be copied under the table of your index name (in this examplesift100k
) and you can create an index later externally. Without the index most of the index operations will not be accessible via this client.
Extract Metadata Fields
When copying from Pinecone we create a table in this structure: sql (id TEXT, embedding REAL[], metadata jsonb)
If you are planning to use the index with raw sql clients, you may want to extract metadata into separate columns, so you could have more complex/nice looking queries over your metadata fields.
So if our metadata has this shape { "title": string, "description": string }
, we can extract it using this query:
BEGIN;
ALTER TABLE sift100k
ADD COLUMN title TEXT,
ADD COLUMN description TEXT;
-- Update the new columns with data extracted from the JSONB column
UPDATE sift100k
SET
title = metadata->>'title',
description = metadata->>'description';
-- Optionally drop the metadata column
ALTER TABLE sift100k DROP COLUMN metadata;
COMMIT;
After doing this your index will most likely be uncomaptible with this python client, and you should use it via raw sql client like psycopg2
Index operations
import os
import lantern_pinecone
import pandas as pd
LANTERN_DB_URL = os.environ.get('LANTERN_DB_URL') or 'postgres://postgres@localhost:5432'
lantern_pinecone.init(LANTERN_DB_URL)
# Giving our index a name
index_name = "hello-lantern"
# Delete the index, if an index of the same name already exists
if index_name in lantern_pinecone.list_indexes():
lantern_pinecone.delete_index(index_name)
import time
dimensions = 3
lantern_pinecone.create_index(name=index_name, dimension=dimensions, metric="cosine")
index = lantern_pinecone.Index(index_name=index_name)
df = pd.DataFrame(
data={
"id": ["A", "B"],
"vector": [[1., 1., 1.], [1., 2., 3.]]
})
# Insert vectors
index.upsert(vectors=zip(df.id, df.vector))
index.describe_index_stats()
index.query(
vector=[2., 2., 2.],
top_k=5,
include_values=True) # returns top_k matches
lantern_pinecone.delete_index(index_name)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lantern-pinecone-0.0.6.tar.gz
.
File metadata
- Download URL: lantern-pinecone-0.0.6.tar.gz
- Upload date:
- Size: 7.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b3065c362a9e57b87732afa0f2efb4b4d8953ec0432a7d06c10c19fd5857d0a |
|
MD5 | cbdf86a498032d81502f1ca17c6ddefe |
|
BLAKE2b-256 | d4dd1e4188dd5eecb2cdb51b0e5d83d882ea6debc8d0078e5e69dda8234ac46f |
File details
Details for the file lantern_pinecone-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: lantern_pinecone-0.0.6-py3-none-any.whl
- Upload date:
- Size: 7.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | acd4346768e57fe0d8cea26b16972557a4784aeda8ed8fac99ec83453483c991 |
|
MD5 | f6bed177efc1c6698e26d869a15deef3 |
|
BLAKE2b-256 | 7f43be3ca5e5b7d37235f5297710e7a399324c9c5dad66f615c7659d470ab147 |