Skip to main content

Utils for Computer Vision Deep Learning research

Project description

LAPiX DL - Utils for Computer Vision Deep Learning research

This package contains utilitary functions to support train and evaluation of Deep Learning models applied to images.

Three computer vision approaches are covered: Segmentation, Detection and Classification.

How to use

For Model Evaluation

This module exports the following functions for model evaluation:

from lapixdl.evaluation.evaluate import evaluate_segmentation
from lapixdl.evaluation.evaluate import evaluate_detection
from lapixdl.evaluation.evaluate import evaluate_classification

All model evaluation methods need two iterators: one for the ground truth itens and one for the predictions.

These iterators must be sorted equaly, assuring that the ground truth and the prediction of the same sample are at the same position.

Example of segmentation model evaluation using PyTorch:

from lapixdl.evaluation.evaluate import evaluate_segmentation

classes = ['background', 'object']

# Iterator for GT masks 
# `dl` is a PyTorch DataLoader
def gt_mask_iterator_from_dl(dl):
  for imgs, masks in iter(dl):
    for mask in masks:
      yield mask

# Iterator for prediction masks 
# `predict` a function that, given an image, predicts the mask.
def pred_mask_iterator_from_dl(dl, predict):
  for imgs, masks in iter(dl):
    for img in imgs:
      yield predict(img)

gt_masks = gt_mask_iterator_from_dl(validation_dl)
pred_masks = pred_mask_iterator_from_dl(validation_dl, prediction_function)

# Calculates and shows metrics
eval = evaluate_segmentation(gt_masks, pred_masks, classes)

# Shows confusion matrix and returns its Figure and Axes
fig, axes = eval.show_confusion_matrix()

For Results Visualization

This module exports the following functions for results visualization:

from lapixdl.evaluation.visualize import show_segmentations
from lapixdl.evaluation.visualize import show_classifications
from lapixdl.evaluation.visualize import show_detections

The available color maps are the ones from matplotlib.

For Data Conversion

This module exports the following functions for data conversion:

from lapixdl.convert.labelbox import labelbox_to_coco

Example of conversion from Labelbox to COCO labels format:

import json
from lapixdl.evaluation.evaluate import evaluate_segmentation

# Loads Labelbox json
with open('./labelbox.json') as in_file:
    labelbox_file = json.load(in_file)

# Converts it
coco_dict = labelbox_to_coco(labelbox_file)

# Saves converted json
with open('./coco.json', 'w') as out_file:
    json.dump(coco_dict, out_file)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lapixdl-0.6.2.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

lapixdl-0.6.2-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file lapixdl-0.6.2.tar.gz.

File metadata

  • Download URL: lapixdl-0.6.2.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for lapixdl-0.6.2.tar.gz
Algorithm Hash digest
SHA256 1ad88c26a05ead7abc33d610c28144d9adee8ee30ec7cb3f3a4031e384201315
MD5 1b3b7c6556adfa6fadfe67f0ef8d9dc1
BLAKE2b-256 7f6d9c9b7fc76799a168180e2b76def4af067225a14ff52a2d9624c85eb83678

See more details on using hashes here.

File details

Details for the file lapixdl-0.6.2-py3-none-any.whl.

File metadata

  • Download URL: lapixdl-0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 20.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for lapixdl-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 610d426a623786cc1ab90403c1f404160d82466494b5740b2bcab3f40233ec07
MD5 ec8b268050d84ad52c1e5fa490454e41
BLAKE2b-256 13bbec9573c245ecf705b24133f036276c6716ec91e5ea713d9196482732f8b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page