Skip to main content

Utils for Computer Vision Deep Learning research

Project description

LAPiX DL - Utils for Computer Vision Deep Learning research

This package contains utilitary functions to support train and evaluation of Deep Learning models applied to images.

Three computer vision approaches are covered: Segmentation, Detection and Classification.

How to use

For Model Evaluation

This module exports the following functions for model evaluation:

from lapixdl.evaluation.evaluate import evaluate_segmentation
from lapixdl.evaluation.evaluate import evaluate_detection
from lapixdl.evaluation.evaluate import evaluate_classification

All model evaluation methods need two iterators: one for the ground truth itens and one for the predictions.

These iterators must be sorted equaly, assuring that the ground truth and the prediction of the same sample are at the same position.

Example of segmentation model evaluation using PyTorch:

from lapixdl.evaluation.evaluate import evaluate_segmentation

classes = ['background', 'object']

# Iterator for GT masks 
# `dl` is a PyTorch DataLoader
def gt_mask_iterator_from_dl(dl):
  for imgs, masks in iter(dl):
    for mask in masks:
      yield mask

# Iterator for prediction masks 
# `predict` a function that, given an image, predicts the mask.
def pred_mask_iterator_from_dl(dl, predict):
  for imgs, masks in iter(dl):
    for img in imgs:
      yield predict(img)

gt_masks = gt_mask_iterator_from_dl(validation_dl)
pred_masks = pred_mask_iterator_from_dl(validation_dl, prediction_function)

# Calculates and shows metrics
eval = evaluate_segmentation(gt_masks, pred_masks, classes)

# Shows confusion matrix and returns its Figure and Axes
fig, axes = eval.show_confusion_matrix()

For Results Visualization

This module exports the following functions for results visualization:

from lapixdl.evaluation.visualize import show_segmentations
from lapixdl.evaluation.visualize import show_classifications
from lapixdl.evaluation.visualize import show_detections

The available color maps are the ones from matplotlib.

For Data Conversion

This module exports the following functions for data conversion:

from lapixdl.convert.labelbox import labelbox_to_coco

Example of conversion from Labelbox to COCO labels format:

import json
from lapixdl.convert.labelbox import labelbox_to_coco

# Loads Labelbox json
with open('./labelbox.json') as in_file:
    labelbox_file = json.load(in_file)

# Converts it
coco_dict = labelbox_to_coco(labelbox_file)

# Saves converted json
with open('./coco.json', 'w') as out_file:
    json.dump(coco_dict, out_file)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lapixdl-0.7.11.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

lapixdl-0.7.11-py3-none-any.whl (20.9 kB view details)

Uploaded Python 3

File details

Details for the file lapixdl-0.7.11.tar.gz.

File metadata

  • Download URL: lapixdl-0.7.11.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for lapixdl-0.7.11.tar.gz
Algorithm Hash digest
SHA256 e8d85e039548453f4c465c0ae74272d004507451214a96b756784a99d29b9988
MD5 17644092761dd8817cf24a046725c6b0
BLAKE2b-256 49bee86759b6a4bf92b972b317656860810d685a3c13fa7c330e96fd96c17690

See more details on using hashes here.

File details

Details for the file lapixdl-0.7.11-py3-none-any.whl.

File metadata

  • Download URL: lapixdl-0.7.11-py3-none-any.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for lapixdl-0.7.11-py3-none-any.whl
Algorithm Hash digest
SHA256 3559854a676182dfb5bbe78696740aaf7d025b82c8f7917ac7924bcc9025014c
MD5 0d4d9be0e9ca7f28172b7c7f02bd32ce
BLAKE2b-256 39ba8fe80bec60cf9c86064e8746cb8da3d79a652bcad8e6f69af18ec39487a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page