Skip to main content

Utils for Computer Vision Deep Learning research

Project description

DOI CodeFactor PyPI

LAPiX DL - Utils for Computer Vision Deep Learning research

This package contains utilitary functions to support train and evaluation of Deep Learning models applied to images.

Three computer vision approaches are covered: Segmentation, Detection and Classification.

How to use

For Model Evaluation

This module exports the following functions for model evaluation:

from lapixdl.evaluation.evaluate import evaluate_segmentation
from lapixdl.evaluation.evaluate import evaluate_detection
from lapixdl.evaluation.evaluate import evaluate_classification

All model evaluation methods need two iterators: one for the ground truth itens and one for the predictions.

These iterators must be sorted equaly, assuring that the ground truth and the prediction of the same sample are at the same position.

Example of segmentation model evaluation using PyTorch:

from lapixdl.evaluation.evaluate import evaluate_segmentation

classes = ['background', 'object']

# Iterator for GT masks
# `dl` is a PyTorch DataLoader
def gt_mask_iterator_from_dl(dl):
  for imgs, masks in iter(dl):
    for mask in masks:
      yield mask

# Iterator for prediction masks
# `predict` a function that, given an image, predicts the mask.
def pred_mask_iterator_from_dl(dl, predict):
  for imgs, masks in iter(dl):
    for img in imgs:
      yield predict(img)

gt_masks = gt_mask_iterator_from_dl(validation_dl)
pred_masks = pred_mask_iterator_from_dl(validation_dl, prediction_function)

# Calculates and shows metrics
eval = evaluate_segmentation(gt_masks, pred_masks, classes)

# Shows confusion matrix and returns its Figure and Axes
fig, axes = eval.show_confusion_matrix()

Example of how to log the results of LAPiX DL evaluations in the Weights & Biases platform

About Weights & Biases.

from lapixdl.evaluation.evaluate import evaluate_segmentation
import wandb

# init wandb ...
...

eval_test = evaluate_segmentation(gt_masks, pred_masks, categories)

...

# If you want to log everything
wandb.log({'test_evaluation':  eval_test.to_dict()['By Class']})

# If you want to choose specific categories to log
selected_cats = ['A', 'B', 'C']
metrics_by_cat = {k: v for k, v in eval_test.to_dict()['By Class'].items() if k in selected_cats}
wandb.log({'test_evaluation': metrics_by_cat})

For Results Visualization

This module exports the following functions for results visualization:

from lapixdl.evaluation.visualize import show_segmentations
from lapixdl.evaluation.visualize import show_classifications
from lapixdl.evaluation.visualize import show_detections

The available color maps are the ones from matplotlib.

For Data Conversion

This module exports the following functions for data conversion:

from lapixdl.convert.labelbox import labelbox_to_coco

Example of conversion from Labelbox to COCO labels format:

import json
from lapixdl.convert.labelbox import labelbox_to_coco

# Loads Labelbox json
with open('./labelbox.json') as in_file:
    labelbox_file = json.load(in_file)

# Converts it
coco_dict = labelbox_to_coco(labelbox_file)

# Saves converted json
with open('./coco.json', 'w') as out_file:
    json.dump(coco_dict, out_file)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lapixdl-0.8.12.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

lapixdl-0.8.12-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file lapixdl-0.8.12.tar.gz.

File metadata

  • Download URL: lapixdl-0.8.12.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for lapixdl-0.8.12.tar.gz
Algorithm Hash digest
SHA256 7b91daa8c1a9cd6fd69c7130793c45a3ef3d7ef2a2e699d95ee14eadafd61529
MD5 045321d83c92bb1374454a52c74531cc
BLAKE2b-256 2affde5cde7826a60a1bfa59bfcddc62095099777925283dd9e3fef3ae7090bf

See more details on using hashes here.

File details

Details for the file lapixdl-0.8.12-py3-none-any.whl.

File metadata

  • Download URL: lapixdl-0.8.12-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for lapixdl-0.8.12-py3-none-any.whl
Algorithm Hash digest
SHA256 e045156b3620fb6ec7f3dee9c1c322f834b08ea88f54e6475e424c2090882075
MD5 31e0128a02791b864d042284e9362586
BLAKE2b-256 eb37e61c39c7798634be5471b8705a289b31e2135efdf84089acfdb0a2666a86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page