Skip to main content

ISO 11146 Calculation of Laser Beam Center, Diameter, and M²

Project description

https://img.shields.io/pypi/v/laserbeamsize.svg https://colab.research.google.com/assets/colab-badge.svg https://mybinder.org/badge_logo.svg https://img.shields.io/badge/readthedocs-latest-blue.svg https://img.shields.io/badge/github-code-green.svg https://img.shields.io/badge/MIT-license-yellow.svg

Simple and fast calculation of beam sizes from a single monochrome image based on the ISO 11146 method of variances. Some effort has been made to make the algorithm less sensitive to background offset and noise.

This module also supports M² calculations based on a series of images collected at various distances from the focused beam.

Extensive documentation can be found at <https://laserbeamsize.readthedocs.io>

Using laserbeamsize

  1. Install with pip:

    pip install --user laserbeamsize
  2. or run this code in the cloud using Google Collaboratory by selecting the Jupyter notebook that interests you.

  3. use binder which will create a new environment that allows you to run Jupyter notebooks. This takes a bit longer to start, but it automatically installs laserbeamsize.

  4. clone the laserbeamsize github repository and then add the repository to your PYTHONPATH environment variable

Determining the beam size in an image

Finding the center and dimensions of a good beam image:

import imageio
import numpy as np
import matplotlib.pyplot as plt
import laserbeamsize as lbs

beam = imageio.imread("t-hene.pgm")
x, y, dx, dy, phi = lbs.beam_size(beam)

print("The center of the beam ellipse is at (%.0f, %.0f)" % (x,y))
print("The ellipse diameter (closest to horizontal) is %.0f pixels" % dx)
print("The ellipse diameter (closest to   vertical) is %.0f pixels" % dy)
print("The ellipse is rotated %.0f° ccw from horizontal" % (phi*180/3.1416))

to produce:

The center of the beam ellipse is at (651, 491)
The ellipse diameter (closest to horizontal) is 334 pixels
The ellipse diameter (closest to   vertical) is 327 pixels
The ellipse is rotated 29° ccw from the horizontal

A visual report can be done with one function call:

lbs.beam_size_plot(beam)
plt.show()

produces something like

hene-report.png

or:

lbs.beam_size_plot(beam, r"Original Image $\lambda$=4µm beam", pixel_size = 12, units='µm')
plt.show()

produces something like

astigmatic-report.png

Non-gaussian beams work too:

# 12-bit pixel image stored as high-order bits in 16-bit values
tem02 = imageio.imread("TEM02_100mm.pgm") >> 4
lbs.beam_size_plot(tem02, title = r"TEM$_{02}$ at z=100mm", pixel_size=3.75)
plt.show()

produces

tem02.png

Determining M²

Determining M² for a laser beam is also straightforward. Just collect beam diameters from five beam locations within one Rayleigh distance of the focus and from five locations more than two Rayleigh distances:

lambda1=308e-9 # meters
z1_all=np.array([-200,-180,-160,-140,-120,-100,-80,-60,-40,-20,0,20,40,60,80,99,120,140,160,180,200])*1e-3
d1_all=2*np.array([416,384,366,311,279,245,216,176,151,120,101,93,102,120,147,177,217,256,291,316,348])*1e-6
lbs.M2_radius_plot(z1_all, d1_all, lambda1, strict=True)
plt.show()

produces

m2fit.png

Here is an analysis of a set of images that were insufficient for ISO 11146:

lambda0 = 632.8e-9 # meters
z10 = np.array([247,251,259,266,281,292])*1e-3 # meters
filenames = ["sb_%.0fmm_10.pgm" % (number*1e3) for number in z10]

# the 12-bit pixel images are stored in high-order bits in 16-bit values
tem10 = [imageio.imread(name)>>4 for name in filenames]

# remove top to eliminate artifact
for i in range(len(z10)):
    tem10[i] = tem10[i][200:,:]

# find beam in all the images and create arrays of beam diameters
options = {'pixel_size': 3.75, 'units': "µm", 'crop': [1400,1400], 'z':z10}
dy, dx= lbs.beam_size_montage(tem10, **options)  # dy and dx in microns
plt.show()

produces

sbmontage.png

Here is one way to plot the fit using the above diameters:

lbs.M2_diameter_plot(z10, dx*1e-6, lambda0, dy=dy*1e-6)
plt.show()

In the graph on the below right, the dashed line shows the expected divergence of a pure gaussian beam. Since real beams should diverge faster than this (not slower) there is some problem with the measurements (too few!). On the other hand, the M² value the semi-major axis 2.6±0.7 is consistent with the expected value of 3 for the TEM₁₀ mode.

sbfit.png

License

laserbeamsize is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

laserbeamsize-1.7.3.tar.gz (738.5 kB view details)

Uploaded Source

Built Distribution

laserbeamsize-1.7.3-py3-none-any.whl (23.8 kB view details)

Uploaded Python 3

File details

Details for the file laserbeamsize-1.7.3.tar.gz.

File metadata

  • Download URL: laserbeamsize-1.7.3.tar.gz
  • Upload date:
  • Size: 738.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.5

File hashes

Hashes for laserbeamsize-1.7.3.tar.gz
Algorithm Hash digest
SHA256 c756dbf8f044573481975b422a317b14f2068ab78cb8d5e6888db2581ba990e6
MD5 855c44279e6cb0957493d0d8c75a081a
BLAKE2b-256 db9d492f9053a2d222195f8863c926fb8ca1078cbed5a551ebc27d33ad5577cf

See more details on using hashes here.

File details

Details for the file laserbeamsize-1.7.3-py3-none-any.whl.

File metadata

  • Download URL: laserbeamsize-1.7.3-py3-none-any.whl
  • Upload date:
  • Size: 23.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.5

File hashes

Hashes for laserbeamsize-1.7.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a7ad9a3f55ad4a0ea37c2354268549de14223163853ad38b818cc547321ffed5
MD5 61d430ff8bd294f43b8e13aef6cdcf47
BLAKE2b-256 d0a5350c9300fef8bc3885b0c1bf02b0cff070e7f51bf4bda2ee047062a917b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page