Skip to main content

An API for using metric models (either provided by default or fine-tuned yourself) to evaluate LLMs.

Project description

A library for using evaluation models (either default ones provided by LastMile or your own that are fine-tuned) to evaluate LLMs.

Evaluations are run on dataframes that include any combination of input, ground_truth, and output columns. At least one of these columns must be defined and all values must be strings.

Synchronous Requests

You can use evaluate() and stream_evaluate() for non-streaming and streaming results.

Asynchronous Requests

You can use submit_job() which will return a job_id string. Ideal for evaluations that don't require immediate responses. With a job_id (ex: cm0c4bxwo002kpe01h5j4zj2y) you can:

  1. Read job info: <host_url>/api/auto_eval_job/read?id=<job_id>

    Ex: https://lastmileai.dev/api/auto_eval_job/read?id=cm0c4bxwo002kpe01h5j4zj2y

  2. Retrieve results: <host_url>/api/auto_eval_job/get_results?id=<job_id>

    Ex: https://lastmileai.dev/api/auto_eval_job/get_results?id=cm0c4bxwo002kpe01h5j4zj2y

Example Usage

from lastmile_auto_eval import (
    EvaluationMetric,
    EvaluationResult,
    evaluate,
    stream_evaluate,
    submit_job,
)
import pandas as pd
import json
from typing import Any, Generator

queries = ["what color is the sky?", "what color is the sky?"]
correct_answer = "the sky is blue"
incorrect_answer = "the sky is red"
ground_truth_values = [correct_answer, correct_answer]
responses = [correct_answer, incorrect_answer]

df = pd.DataFrame(
    {
        "input": queries,
        "ground_truth": ground_truth_values,
        "output": responses,
    }
)

# Non-streaming
result: EvaluationResult = evaluate(
    dataframe=df,
    metrics=[
        EvaluationMetric.P_FAITHFUL,
        EvaluationMetric.SUMMARIZATION,
    ],
)
print(json.dumps(result, indent=2))

# Response will look something like this:
"""
{
  "p_faithful": [
    0.999255359172821,
    0.00011296303273411468
  ],
  "summarization": [
    0.9995583891868591,
    6.86283819959499e-05
  ]
}
"""

# Response-streaming
result_iterator: Generator[EvaluationResult, Any, Any] = (
    stream_evaluate(
        dataframe=df,
        metrics=[
            EvaluationMetric.P_FAITHFUL,
            EvaluationMetric.SUMMARIZATION,
        ],
    )
)
for result_chunk in result_iterator:
    print(json.dumps(result_chunk, indent=2))

# Bidirectional-streaming
def gen_df_stream(input: list[str], gt: list[str], output: list[str]):
    for i in range(len(input)):
        df_chunk = pd.DataFrame(
            {
                "input": [input[i]],
                "ground_truth": [gt[i]],
                "output": [output[i]],
            }
        )
        yield df_chunk

df_iterator = gen_df_stream(
    input=queries, gt=ground_truth_values, output=responses
)
result_iterator: Generator[EvaluationResult, Any, Any] = (
    stream_evaluate(
        dataframe=df_iterator,
        metrics=[
            EvaluationMetric.P_FAITHFUL,
            EvaluationMetric.SUMMARIZATION,
        ],
    )
)
for result_chunk in result_iterator:
    print(json.dumps(result_chunk, indent=2))

# Async request
job_id = submit_job(
    df,
    metrics=[
        EvaluationMetric.P_FAITHFUL,
        EvaluationMetric.SUMMARIZATION,
    ],
)
print(f"{job_id=}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lastmile_auto_eval-0.0.10.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

lastmile_auto_eval-0.0.10-py3-none-any.whl (24.5 kB view details)

Uploaded Python 3

File details

Details for the file lastmile_auto_eval-0.0.10.tar.gz.

File metadata

  • Download URL: lastmile_auto_eval-0.0.10.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.6

File hashes

Hashes for lastmile_auto_eval-0.0.10.tar.gz
Algorithm Hash digest
SHA256 47ac3d28647bb8f57d0dfc1c1a5c6a1601a9d14666bab38040ade7a3278ccacd
MD5 f7dfd0ad8dfe1bb20d3be35883b0d07c
BLAKE2b-256 5b01a72161fe61040057703d658b7d3e957b0383430a9c12286b9b082c13a678

See more details on using hashes here.

File details

Details for the file lastmile_auto_eval-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for lastmile_auto_eval-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 027740c9670323e69092a7d674c17b1ddaf96dbf9df6687a489bcc3b11ef5122
MD5 a725c0a189a3b398d721276cf90c539f
BLAKE2b-256 5a804ed310973c7c188cdd9be8eb073d5adf07250c6d020c38172fdb508c923a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page