Skip to main content

An API for using metric models (either provided by default or fine-tuned yourself) to evaluate LLMs.

Project description

A library for using evaluation models (either default ones provided by LastMile or your own that are fine-tuned) to evaluate LLMs.

Evaluations are run on dataframes that include any combination of input, ground_truth, and output columns. At least one of these columns must be defined and all values must be strings.

Synchronous Requests

You can use evaluate() and stream_evaluate() for non-streaming and streaming results.

Asynchronous Requests

You can use submit_job() which will return a job_id string. Ideal for evaluations that don't require immediate responses. With a job_id (ex: cm0c4bxwo002kpe01h5j4zj2y) you can:

  1. Read job info: <host_url>/api/auto_eval_job/read?id=<job_id>

    Ex: https://eval.lastmileai.dev/api/auto_eval_job/read?id=cm0c4bxwo002kpe01h5j4zj2y

  2. Retrieve results: <host_url>/api/auto_eval_job/get_results?id=<job_id>

    Ex: https://lastmileai.dev/api/auto_eval_job/get_results?id=cm0c4bxwo002kpe01h5j4zj2y

Example Usage

from lastmile_auto_eval import (
    EvaluationMetric,
    EvaluationResult,
    evaluate,
    stream_evaluate,
    submit_job,
)
import pandas as pd
import json
from typing import Any, Generator

queries = ["what color is the sky?", "what color is the sky?"]
correct_answer = "the sky is blue"
incorrect_answer = "the sky is red"
ground_truth_values = [correct_answer, correct_answer]
responses = [correct_answer, incorrect_answer]

df = pd.DataFrame(
    {
        "input": queries,
        "ground_truth": ground_truth_values,
        "output": responses,
    }
)

# Non-streaming
result: EvaluationResult = evaluate(
    dataframe=df,
    metrics=[
        EvaluationMetric.P_FAITHFUL,
        EvaluationMetric.SUMMARIZATION,
    ],
)
print(json.dumps(result, indent=2))

# Response will look something like this:
"""
{
  "p_faithful": [
    0.999255359172821,
    0.00011296303273411468
  ],
  "summarization": [
    0.9995583891868591,
    6.86283819959499e-05
  ]
}
"""

# Response-streaming
result_iterator: Generator[EvaluationResult, Any, Any] = (
    stream_evaluate(
        dataframe=df,
        metrics=[
            EvaluationMetric.P_FAITHFUL,
            EvaluationMetric.SUMMARIZATION,
        ],
    )
)
for result_chunk in result_iterator:
    print(json.dumps(result_chunk, indent=2))

# Bidirectional-streaming
def gen_df_stream(input: list[str], gt: list[str], output: list[str]):
    for i in range(len(input)):
        df_chunk = pd.DataFrame(
            {
                "input": [input[i]],
                "ground_truth": [gt[i]],
                "output": [output[i]],
            }
        )
        yield df_chunk

df_iterator = gen_df_stream(
    input=queries, gt=ground_truth_values, output=responses
)
result_iterator: Generator[EvaluationResult, Any, Any] = (
    stream_evaluate(
        dataframe=df_iterator,
        metrics=[
            EvaluationMetric.P_FAITHFUL,
            EvaluationMetric.SUMMARIZATION,
        ],
    )
)
for result_chunk in result_iterator:
    print(json.dumps(result_chunk, indent=2))

# Async request
job_id = submit_job(
    df,
    metrics=[
        EvaluationMetric.P_FAITHFUL,
        EvaluationMetric.SUMMARIZATION,
    ],
)
print(f"{job_id=}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lastmile_auto_eval-0.0.5.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

lastmile_auto_eval-0.0.5-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file lastmile_auto_eval-0.0.5.tar.gz.

File metadata

  • Download URL: lastmile_auto_eval-0.0.5.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for lastmile_auto_eval-0.0.5.tar.gz
Algorithm Hash digest
SHA256 53edd642aa48ef942cb4ae9abfdf5816669c922e286f8c93ad10b8384b9e14f7
MD5 99817aecc8c09c557310de4a9fb9dcf8
BLAKE2b-256 54e844356cc369ee08c4003167b71f98bb6f44c41376467db361fbf6e38b655b

See more details on using hashes here.

File details

Details for the file lastmile_auto_eval-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for lastmile_auto_eval-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b30d5c1e9caf616f84049e19560863e23d059ef290834cd8cc8b16adc5b53a5f
MD5 783a6e1ca00037938c6ac098b6be2017
BLAKE2b-256 e44a7fcbfb06887b398d842ab5a79bb2278e234b9be86f504eb857e0d5294864

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page