Skip to main content

An API for using metric models (either provided by default or fine-tuned yourself) to evaluate LLMs.

Project description

A library for using evaluation models (either default ones provided by LastMile or your own that are fine-tuned) to evaluate LLMs.

Evaluations are run on dataframes that include any combination of input, ground_truth, and output columns. At least one of these columns must be defined and all values must be strings.

Synchronous Requests

You can use evaluate() and stream_evaluate() for non-streaming and streaming results.

Asynchronous Requests

You can use submit_job() which will return a job_id string. Ideal for evaluations that don't require immediate responses. With a job_id (ex: cm0c4bxwo002kpe01h5j4zj2y) you can:

  1. Read job info: <host_url>/api/auto_eval_job/read?id=<job_id>

    Ex: https://lastmileai.dev/api/auto_eval_job/read?id=cm0c4bxwo002kpe01h5j4zj2y

  2. Retrieve results: <host_url>/api/auto_eval_job/get_results?id=<job_id>

    Ex: https://lastmileai.dev/api/auto_eval_job/get_results?id=cm0c4bxwo002kpe01h5j4zj2y

Example Usage

from lastmile_auto_eval import (
    EvaluationMetric,
    EvaluationResult,
    evaluate,
    stream_evaluate,
    submit_job,
)
import pandas as pd
import json
from typing import Any, Generator

queries = ["what color is the sky?", "what color is the sky?"]
correct_answer = "the sky is blue"
incorrect_answer = "the sky is red"
ground_truth_values = [correct_answer, correct_answer]
responses = [correct_answer, incorrect_answer]

df = pd.DataFrame(
    {
        "input": queries,
        "ground_truth": ground_truth_values,
        "output": responses,
    }
)

# Non-streaming
result: EvaluationResult = evaluate(
    dataframe=df,
    metrics=[
        EvaluationMetric.P_FAITHFUL,
        EvaluationMetric.SUMMARIZATION,
    ],
)
print(json.dumps(result, indent=2))

# Response will look something like this:
"""
{
  "p_faithful": [
    0.999255359172821,
    0.00011296303273411468
  ],
  "summarization": [
    0.9995583891868591,
    6.86283819959499e-05
  ]
}
"""

# Response-streaming
result_iterator: Generator[EvaluationResult, Any, Any] = (
    stream_evaluate(
        dataframe=df,
        metrics=[
            EvaluationMetric.P_FAITHFUL,
            EvaluationMetric.SUMMARIZATION,
        ],
    )
)
for result_chunk in result_iterator:
    print(json.dumps(result_chunk, indent=2))

# Bidirectional-streaming
def gen_df_stream(input: list[str], gt: list[str], output: list[str]):
    for i in range(len(input)):
        df_chunk = pd.DataFrame(
            {
                "input": [input[i]],
                "ground_truth": [gt[i]],
                "output": [output[i]],
            }
        )
        yield df_chunk

df_iterator = gen_df_stream(
    input=queries, gt=ground_truth_values, output=responses
)
result_iterator: Generator[EvaluationResult, Any, Any] = (
    stream_evaluate(
        dataframe=df_iterator,
        metrics=[
            EvaluationMetric.P_FAITHFUL,
            EvaluationMetric.SUMMARIZATION,
        ],
    )
)
for result_chunk in result_iterator:
    print(json.dumps(result_chunk, indent=2))

# Async request
job_id = submit_job(
    df,
    metrics=[
        EvaluationMetric.P_FAITHFUL,
        EvaluationMetric.SUMMARIZATION,
    ],
)
print(f"{job_id=}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lastmile_auto_eval-0.0.7.tar.gz (14.8 kB view details)

Uploaded Source

Built Distribution

lastmile_auto_eval-0.0.7-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file lastmile_auto_eval-0.0.7.tar.gz.

File metadata

  • Download URL: lastmile_auto_eval-0.0.7.tar.gz
  • Upload date:
  • Size: 14.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.6

File hashes

Hashes for lastmile_auto_eval-0.0.7.tar.gz
Algorithm Hash digest
SHA256 311c67f57535af2ba41f3122b0103325b43bc38d56af2126d358acfb965390c4
MD5 7d1e5961ea1f529c43e0de907dd6d5b6
BLAKE2b-256 e85cac6df230f072c56d79e76c90423633226da5d88b1caccc95bb9cd7ed3d1e

See more details on using hashes here.

File details

Details for the file lastmile_auto_eval-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for lastmile_auto_eval-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1c2df4735d524f19d19a2c822dd399e1c84c91164959677f9a2a9bc195e2dbc0
MD5 9fc96120dffcf79bb4b07b30035294ed
BLAKE2b-256 0cc2779ad8828a1994f4371a1152af93a087b561c682246f731bdf76834c43d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page