A tool for building latent spaces.
Project description
LatentSpaceBuilder
The Latent Space Builder builds the latent space for an image dataset.
Getting started
Clone this repository.
git clone https://github.com/compSPI/LatentSpaceBuilder.git
Change the current working directory to the root of this repository.
cd LatentSpaceBuilder
Download from the Anaconda Cloud and install the Python environment that has the dependencies required to run the code.
conda env create compSPI/compSPI
Activate the environment.
conda activate compSPI
Install the kernel.
python -m ipykernel install --user --name compSPI --display-name "Python (compSPI)"
Exit the environment.
conda deactivate
Running the notebook
Run jupyter notebook.
jupyter notebook
Open the tutorial notebook latent_space_builder.ipynb
.
Change the Python kernel to compSPI
.
Set dataset_file
to an HDF5 file containing the dataset.
dataset_file = '../data/cspi_synthetic_dataset_diffraction_patterns_1024x1040.hdf5'
Run the notebook.
Installation
The project package can be installed by running the following command.
python setup.py install
Code structure
The relevant files and folders in this repository are described below:
-
README.md
: Highlights the usefulness of the Latent Space builder. -
latent_space_builder.ipynb
: Provides a tutorial notebook for using the Latent Space Builder. -
latent_space_builder/
: Contains the Python file required to run the notebook.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for latent-space-builder-0.0.1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ad9b9168a163c68aed835d41f7703852bc47cc8ca96fe10415bd18d9f1f59de |
|
MD5 | 93f76e602ef89723977591fc2521fe26 |
|
BLAKE2b-256 | 0dd25a36fbfa2176f41c67120f1b42d68fdc9cc94a65ddec8d56e7347386af23 |
Hashes for latent_space_builder-0.0.1-py3.8.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5cdf3f4c3fa99b12392edd691215f201d4d668d7478a60eaa592a8d53ba67dfc |
|
MD5 | bd88a0ccb6d616252bbc6a5c8b00dac8 |
|
BLAKE2b-256 | fa790c9a64f2257409dedb6a609da0c30baea29dc2ec33b9cf3b3f7672fbbe90 |
Hashes for latent_space_builder-0.0.1-py3.7.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d03e523931e38d6b92deae5e9d0911babd6e66a2492e97fcf31dcf675f625a2 |
|
MD5 | 714235be82a3113fbedbb9f6485e76fc |
|
BLAKE2b-256 | b5423b57319dc78a57844f30b7a28b51e92e2256fddef0a6a1fa1fcefe724188 |
Hashes for latent_space_builder-0.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b024e39a013e6ee39ba6efc495ebb947b29fe18a78ba5a3c31b00496630992a |
|
MD5 | 1f7e55b6e042c8eb87bbce022ef0e1eb |
|
BLAKE2b-256 | c95e91131d38aa16f0016333cdb7eba3b52b94ec18abbae0dc9bef37dca3e6dc |