Skip to main content

A method to generate counterfactuals

Project description

Latent Shift - A Simple Autoencoder Approach to Counterfactual Generation

Open In Colab

The idea

Read the paper: https://arxiv.org/abs/2102.09475

Watch a video: https://www.youtube.com/watch?v=1fxSDP8DheI

The main diagram: latentshift.gif

Animations/GIFs

Smiling Arched Eyebrows
Mouth Slightly Open Young

Generating a transition sequence

For a predicting of smiling

gen_sequence.png

Multiple different targets

Comparison to traditional methods

For a predicting of pointy_nose

comparison.png

Getting Started

# Load classifier and autoencoder
model = classifiers.FaceAttribute()
ae = autoencoders.Transformer(weights="celeba")

# Load image
input = torch.randn(1, 3, 1024, 1024)

# Defining Latent Shift module
attr = captum.attr.LatentShift(model, ae)

# Computes counterfactual for class 3.
output = attr.attribute(input, target=3)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

latentshift-0.0.3.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

latentshift-0.0.3-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file latentshift-0.0.3.tar.gz.

File metadata

  • Download URL: latentshift-0.0.3.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.0

File hashes

Hashes for latentshift-0.0.3.tar.gz
Algorithm Hash digest
SHA256 a9b450146f6c35d04c5b13a16d5fd9a702b6a3c7e7ad3146c615b7cdbfd37f00
MD5 129e5b6fa323dc54d18f1752eaac3604
BLAKE2b-256 82a45328602573419f1a1648299939c8c6cb46e08083c070e419d16ca6f8a2b7

See more details on using hashes here.

File details

Details for the file latentshift-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: latentshift-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 6.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.0

File hashes

Hashes for latentshift-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 95ef0cd535099b67525b5e4140132a7f4ebcf91f283e73952183935fe1156110
MD5 ed6c05e5ee7b646bd96dc8e85782e1d8
BLAKE2b-256 55bf3017db9b3f676ef6fdf3c13183d705411eb4cac12e11bea0307123087b91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page