A method to generate counterfactuals
Project description
Latent Shift - A Simple Autoencoder Approach to Counterfactual Generation
The idea
Read the paper about Latent Shift: https://arxiv.org/abs/2102.09475
Watch a video: https://www.youtube.com/watch?v=1fxSDP8DheI
Read the paper about Counterfactual Alignment: https://arxiv.org/abs/2312.02186
The main diagram:
Animations/GIFs
Smiling | Arched Eyebrows |
---|---|
Mouth Slightly Open | Young |
---|---|
Generating a transition sequence
For a predicting of smiling
Multiple different targets
Comparison to traditional methods
For a predicting of pointy_nose
Getting Started
$pip install latentshift
import latentshift
# Load classifier and autoencoder
model = latentshift.classifiers.FaceAttribute(download=True)
ae = latentshift.autoencoders.VQGAN(weights="faceshq", download=True)
# Load image
input = torch.randn(1, 3, 1024, 1024)
# Defining Latent Shift module
attr = captum.attr.LatentShift(model, ae)
# Computes counterfactual for class 3.
output = attr.attribute(input, target=3)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
latentshift-0.0.5.tar.gz
(14.8 kB
view details)
Built Distribution
File details
Details for the file latentshift-0.0.5.tar.gz
.
File metadata
- Download URL: latentshift-0.0.5.tar.gz
- Upload date:
- Size: 14.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66eef8993fdb08e742e0f088dcda227d9f8c776878660490fa7240fe00e047da |
|
MD5 | 8f37524f2d0cc20ea01794cd90e1012d |
|
BLAKE2b-256 | 7343a8ff2d081304c511fca51ddc8c29638e193eea49470ec4bef3bda62aaf23 |
File details
Details for the file latentshift-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: latentshift-0.0.5-py3-none-any.whl
- Upload date:
- Size: 15.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 332df53f71822cca35ddb9eb7af95d81cc77caf0071bb0d0a8b1e7763bd455dc |
|
MD5 | 317b6e39e7a34a6dd40cbc378092559c |
|
BLAKE2b-256 | 0a055d3b26debbdff6218e192e6c05003ed70ab3a91a94dbce04dbce35084005 |