Skip to main content

Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Project description

Cross-framework Python Package for Evaluation of Latent-based Generative Models

Documentation Status CircleCI codecov CodeFactor License PyPI version

Latte

Latte (for LATent Tensor Evaluation) is a cross-framework Python package for evaluation of latent-based generative models. Latte supports calculation of disentanglement and controllability metrics in both PyTorch (via TorchMetrics) and TensorFlow.

Installation

For developers working on local clone, cd to the repo and replace latte with .. For example, pip install .[tests]

pip install latte-metrics           # core (numpy only)
pip install latte-metrics[pytorch]  # with torchmetrics wrapper
pip install latte-metrics[keras]    # with tensorflow wrapper
pip install latte-metrics[tests]    # for testing

Running tests locally

pip install .[tests]
pytest tests/ --cov=latte

Example

Functional API

import latte
from latte.functional.disentanglement.mutual_info import mig
import numpy as np

latte.seed(42)

z = np.random.randn(16, 8)
a = np.random.randn(16, 2)

mutual_info_gap = mig(z, a, discrete=False, reg_dim=[4, 3])

Modular API

import latte
from latte.metrics.core.disentanglement import MutualInformationGap
import numpy as np

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.compute()

TorchMetrics API

import latte
from latte.metrics.torch.disentanglement import MutualInformationGap
import torch

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update(z, attributes)

mig_val = mig.compute()

Keras Metric API

import latte
from latte.metrics.keras.disentanglement import MutualInformationGap
from tensorflow import keras as tfk

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.result()

Documentation

https://latte.readthedocs.io/en/latest

Method Chart for Modular API

TorchMetrics: https://torchmetrics.readthedocs.io/en/latest/pages/implement.html

Keras Metric: https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Metric

Torch/Keras wrapper will

  1. convert torch/tf types to numpy types (and move everything to CPU)
  2. call native class methods
  3. if there are return values, convert numpy types back to torch/tf types
Native TorchMetrics Keras Metric
base class latte.metrics.LatteMetric torchmetrics.Metric tf.keras.metrics.Metric
super class object torch.nn.Module tf.keras.layers.Layer
adding buffer self.add_state self.add_state self.add_weight
updating buffer self.update_state self.update self.update_state
resetting buffer self.reset_state self.reset self.reset_state
computing metric values self.compute self.compute self.result

Supported metrics

๐Ÿงช Beta support | โœ”๏ธ Stable | ๐Ÿ”จ In Progress | ๐Ÿ•ฃ In Queue | ๐Ÿ‘€ KIV |

Metric Latte Functional Latte Modular TorchMetrics Keras Metric
Disentanglement Metrics
๐Ÿ“ Mutual Information Gap (MIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-blind Mutual Information Gap (DMIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-aware Mutual Information Gap (XMIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-aware Latent Information Gap (DLIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Separate Attribute Predictability (SAP) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Modularity ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ ฮฒ-VAE Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ FactorVAE Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ DCI Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Interventional Robustness Score (IRS) ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Consistency ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Restrictiveness ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
Interpolatability Metrics
๐Ÿ“ Smoothness ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Monotonicity ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Latent Density Ratio ๐Ÿ•ฃ ๐Ÿ•ฃ ๐Ÿ•ฃ ๐Ÿ•ฃ
๐Ÿ“ Linearity ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€

Bundled metric modules

๐Ÿงช Experimental (subject to changes) | โœ”๏ธ Stable | ๐Ÿ”จ In Progress | ๐Ÿ•ฃ In Queue

Metric Bundle Latte Functional Latte Modular TorchMetrics Keras Metric Included
Dependency-aware Disentanglement ๐Ÿงช ๐Ÿ”จ ๐Ÿ•ฃ ๐Ÿ•ฃ MIG, DMIG, XMIG, DLIG
LIAD-based Interpolatability ๐Ÿงช ๐Ÿ”จ ๐Ÿ•ฃ ๐Ÿ•ฃ Smoothness, Monotonicity

Cite

For individual metrics, please cite the paper according to the link in the ๐Ÿ“ icon in front of each metric.

If you find our package useful please cite us as

@software{
  watcharasupat2021latte,
  author = {Watcharasupat, Karn N. and Lee, Junyoung and Lerch, Alexander},
  title = {{Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models}},
  url = {https://github.com/karnwatcharasupat/latte},
  version = {0.0.1-alpha1}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

latte-metrics-0.0.1a2.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

latte_metrics-0.0.1a2-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file latte-metrics-0.0.1a2.tar.gz.

File metadata

  • Download URL: latte-metrics-0.0.1a2.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for latte-metrics-0.0.1a2.tar.gz
Algorithm Hash digest
SHA256 e87d9506f4a3ed7a06f0723bffef70cf384d0e18ad8a1490b1c3f3e7cc6ac4a1
MD5 637df3c3a96355074930e02ebcff0791
BLAKE2b-256 7b31fe9000b494e6913fc92e7a4e240ebd90be0496cc13f2090c4c0ba4a34456

See more details on using hashes here.

File details

Details for the file latte_metrics-0.0.1a2-py3-none-any.whl.

File metadata

  • Download URL: latte_metrics-0.0.1a2-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for latte_metrics-0.0.1a2-py3-none-any.whl
Algorithm Hash digest
SHA256 a1b7ab793d19227613bf7f75034001d9df01e13069bb8dfb6960236dc8c2e442
MD5 eb747c7d3d15fdca395d30f151745d45
BLAKE2b-256 5e9883af344fbef6d62d8fa98500573a5718bb78488dccc78fd07eafd740230b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page