PyTorch implementation of L2L execution algorithm
Project description
L2L execution algorithm PyTorch
PyTorch implementation of L2L execution algorithm from paper Training Large Neural Networks with Constant Memory using a New Execution Algorithm
🚀 Example
You need to define a torch model where all layers are specified in ModuleList.
See examples folder
Basic usage
import torch
from torch import nn, optim
class M(nn.Module):
def __init__(self, depth: int, dim: int, hidden_dim: Optional[int] = None):
super().__init__()
hidden_dim = hidden_dim or dim
self.layers = nn.ModuleList(
[
nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.LeakyReLU(),
)
]
+ [
nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.LeakyReLU(),
)
for i in range(depth)
]
+ [nn.Linear(hidden_dim, dim), nn.Sigmoid()]
)
def forward(self, batch: torch.Tensor) -> torch.Tensor:
x = batch
for l in self.layers:
x = l(x)
return x
model = M(depth=5, dim=40).train() # on CPU
Then, you can use the L2L wrapper over this model.
from layer_to_layer_pytorch.l2l import Layer2Layer
l2l_model = Layer2Layer(
model,
layers_attr="layers", # attribute with ModuleList
microbatch_size=100, # size of a microbatch in a minibatch :) from original paper
verbose=False # enable tqdm
)
And train it, like torch model (almost):
from tqdm.auto import tqdm, trange
x = torch.rand(1_000, 40) # on CPU
y = torch.rand(1_000, 40) # on CPU
losses = []
criterion = nn.MSELoss()
optimizer = optim.AdamW(l2l_model.main_params) # optimizer works with the main model on CPU
for i in trange(2000):
l2l_model.zero_grad()
_ = l2l_model.forward(x)
loss_value: float = l2l_model.compute_loss(y, criterion)
if i % 50 == 0:
tqdm.write(f"[{i}] loss = {loss_value}")
losses.append(loss_value)
l2l_model.backward()
optimizer.step()
l2l_model.update_main_model_params() # Sync params with CPU
FP-16 usage
Cross-mixes-precision available in init params
from layer_to_layer_pytorch.l2l import Layer2Layer
l2l_model = Layer2Layer(
model,
layers_attr="layers",
microbatch_size=100,
# fp-16
mixed_precision=True,
loss_scale = 128.0
)
And then train the same way 😉
Installation
pip install layer-to-layer-pytorch
or install with Poetry
poetry add layer-to-layer-pytorch
📈 Releases
You can see the list of available releases on the GitHub Releases page.
We follow Semantic Versions specification.
🛡 License
This project is licensed under the terms of the MIT
license. See LICENSE for more details.
📃 Citation
This library
@misc{layer-to-layer-pytorch,
author = {Roman Tezikov},
title = {PyTorch implementation of L2L execution algorithm},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/TezRomacH/layer-to-layer-pytorch}}
}
Original paper
@article{Pudipeddi2020TrainingLN,
title={Training Large Neural Networks with Constant Memory using a New Execution Algorithm},
author={Bharadwaj Pudipeddi and Maral Mesmakhosroshahi and J. Xi and S. Bharadwaj},
journal={ArXiv},
year={2020},
volume={abs/2002.05645}
}
Credits
This project was generated with python-package-template
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file layer-to-layer-pytorch-0.3.0.tar.gz
.
File metadata
- Download URL: layer-to-layer-pytorch-0.3.0.tar.gz
- Upload date:
- Size: 7.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.10 CPython/3.7.9 Linux/5.4.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f0ef78dfba153b608a082a9d05ca043007e6637c63ddc6472ff0bf07f639211 |
|
MD5 | 2c8f42c537e6cbad761ad851b9741534 |
|
BLAKE2b-256 | 21a693c53ef94e64f592725a5f2d677acb1f2838f21ff651fe8ee508a367ab0b |
File details
Details for the file layer_to_layer_pytorch-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: layer_to_layer_pytorch-0.3.0-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.10 CPython/3.7.9 Linux/5.4.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e193ff1b64d48c15d0e70f1248160fe12e9fc32bb7ce8ade212f2fb2dc3fa95 |
|
MD5 | 7acde36142bdab34be8cefa8e08517c0 |
|
BLAKE2b-256 | 1e9ba371dc39f83046a5d779bc5d4a2fb84ea1f148d6540e53379e850bec4163 |