Skip to main content

LayerNext Python SDK

Project description

layernext-python-sdk

LayerNext Python API Client Sync (upload/download) with LayerNext stacks via APIs from your local machine

You can

  • Upload model runs data

Installation

$ pip install layernext-sdk

Usage

import layernext  
  
api_key = 'xxxxxxxxxx' 
secret = 'xxxxxxxxxxx'
url = 'https://api.xxxx.layernext.ai'
  
client = layernext.LayerNextClient(api_key, secret, url)  

collection_base_path = 'path1/path2/'
  
#upload box type annotations
file_path_bbox = '/home/bob/mydata/example_bbox.json' #local file path
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.1', file_path_bbox, 'rectangle')

#upload polygon type annotations
file_path_polygon = '/home/bob/mydata/example_polygon.json'
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.2', file_path_polygon, 'polygon')

#upload line type annotations
file_path_line = '/home/bob/mydata/example_line.json'
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.3', file_path_line, 'line')

Sample Data

Box Geometry

{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "bbox":[
                  217.62,
                  240.54,
                  38.99,
                  57.75
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.30611335805442985
            }
         ]
      }
   ]
}

Polygon Geometry

{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "polygon":[
                  [
                     224.24,
                     297.18
                  ],
                  [
                     228.29,
                     297.18
                  ],
                  [
                     234.91,
                     298.29
                  ],
                  [
                     243.0,
                     297.55
                  ],
                  [
                     249.25,
                     296.45
                  ],
                  [
                     252.19,
                     294.98
                  ],
                  [
                     256.61,
                     292.4
                  ],
                  [
                     254.4,
                     264.08
                  ],
                  [
                     251.83,
                     262.61
                  ],
                  [
                     241.53,
                     260.04
                  ],
                  [
                     235.27,
                     259.67
                  ],
                  [
                     230.49,
                     259.67
                  ],
                  [
                     233.44,
                     255.25
                  ],
                  [
                     237.48,
                     250.47
                  ],
                  [
                     237.85,
                     243.85
                  ],
                  [
                     237.11,
                     240.54
                  ],
                  [
                     234.17,
                     242.01
                  ],
                  [
                     228.65,
                     249.37
                  ],
                  [
                     224.24,
                     255.62
                  ],
                  [
                     220.93,
                     262.61
                  ],
                  [
                     218.36,
                     267.39
                  ],
                  [
                     217.62,
                     268.5
                  ],
                  [
                     218.72,
                     295.71
                  ],
                  [
                     225.34,
                     297.55
                  ]
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.8316836170368476
            }
         ]
      }
   ]
}

Line Geometry

{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "line":[
                  [
                     217.62,
                     240.54
                  ],
                  [
                     256.61,
                     240.54
                  ],
                  [
                     256.61,
                     298.28999999999996
                  ],
                  [
                     217.62,
                     298.28999999999996
                  ]
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.9496247739008129
            }
         ]
      }
   ]
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

layernext-1.0.0b0.tar.gz (32.5 kB view details)

Uploaded Source

Built Distribution

layernext-1.0.0b0-py3-none-any.whl (40.5 kB view details)

Uploaded Python 3

File details

Details for the file layernext-1.0.0b0.tar.gz.

File metadata

  • Download URL: layernext-1.0.0b0.tar.gz
  • Upload date:
  • Size: 32.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for layernext-1.0.0b0.tar.gz
Algorithm Hash digest
SHA256 6d283277bc31e0ffe68a7e9110a2334bd609a68debc5f66d0fac803d8735489c
MD5 d6c9315ea70c36f40f6e424b4b4d5ee2
BLAKE2b-256 7411f4fcd2fdebdf6a5b3d55783a92778dc9b858e9dda801d0cd21a1743f6b98

See more details on using hashes here.

File details

Details for the file layernext-1.0.0b0-py3-none-any.whl.

File metadata

  • Download URL: layernext-1.0.0b0-py3-none-any.whl
  • Upload date:
  • Size: 40.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for layernext-1.0.0b0-py3-none-any.whl
Algorithm Hash digest
SHA256 68a23a5ec490c67f4f141c5a0a32f8a4f32057e782a248083d1f4cde6b9912a0
MD5 3565271e5703559f9a75395e38e0acfd
BLAKE2b-256 7e211fec061ccd36e368d39aa358f583e8301eee90bb40006e7a0ce75d277774

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page