Skip to main content

LayerNext Python SDK

Project description

layernext-python-sdk

LayerNext Python API Client Sync (upload/download) with LayerNext stacks via APIs from your local machine

You can

  • Upload model runs data

Installation

$ pip install layernext-sdk

Usage

import layernext  
  
api_key = 'xxxxxxxxxx' 
secret = 'xxxxxxxxxxx'
url = 'https://api.xxxx.layernext.ai'
  
client = layernext.LayerNextClient(api_key, secret, url)  

collection_base_path = 'path1/path2/'
  
#upload box type annotations
file_path_bbox = '/home/bob/mydata/example_bbox.json' #local file path
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.1', file_path_bbox, 'rectangle')

#upload polygon type annotations
file_path_polygon = '/home/bob/mydata/example_polygon.json'
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.2', file_path_polygon, 'polygon')

#upload line type annotations
file_path_line = '/home/bob/mydata/example_line.json'
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.3', file_path_line, 'line')

Sample Data

Box Geometry

{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "bbox":[
                  217.62,
                  240.54,
                  38.99,
                  57.75
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.30611335805442985
            }
         ]
      }
   ]
}

Polygon Geometry

{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "polygon":[
                  [
                     224.24,
                     297.18
                  ],
                  [
                     228.29,
                     297.18
                  ],
                  [
                     234.91,
                     298.29
                  ],
                  [
                     243.0,
                     297.55
                  ],
                  [
                     249.25,
                     296.45
                  ],
                  [
                     252.19,
                     294.98
                  ],
                  [
                     256.61,
                     292.4
                  ],
                  [
                     254.4,
                     264.08
                  ],
                  [
                     251.83,
                     262.61
                  ],
                  [
                     241.53,
                     260.04
                  ],
                  [
                     235.27,
                     259.67
                  ],
                  [
                     230.49,
                     259.67
                  ],
                  [
                     233.44,
                     255.25
                  ],
                  [
                     237.48,
                     250.47
                  ],
                  [
                     237.85,
                     243.85
                  ],
                  [
                     237.11,
                     240.54
                  ],
                  [
                     234.17,
                     242.01
                  ],
                  [
                     228.65,
                     249.37
                  ],
                  [
                     224.24,
                     255.62
                  ],
                  [
                     220.93,
                     262.61
                  ],
                  [
                     218.36,
                     267.39
                  ],
                  [
                     217.62,
                     268.5
                  ],
                  [
                     218.72,
                     295.71
                  ],
                  [
                     225.34,
                     297.55
                  ]
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.8316836170368476
            }
         ]
      }
   ]
}

Line Geometry

{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "line":[
                  [
                     217.62,
                     240.54
                  ],
                  [
                     256.61,
                     240.54
                  ],
                  [
                     256.61,
                     298.28999999999996
                  ],
                  [
                     217.62,
                     298.28999999999996
                  ]
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.9496247739008129
            }
         ]
      }
   ]
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

layernext-1.1.0.tar.gz (34.2 kB view details)

Uploaded Source

Built Distribution

layernext-1.1.0-py3-none-any.whl (42.4 kB view details)

Uploaded Python 3

File details

Details for the file layernext-1.1.0.tar.gz.

File metadata

  • Download URL: layernext-1.1.0.tar.gz
  • Upload date:
  • Size: 34.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for layernext-1.1.0.tar.gz
Algorithm Hash digest
SHA256 6e01eed6580729e48ac1c3943870e447697c2474568ac0623e94e6afc3e4784e
MD5 5138efc75a14d41c19563584ce6a2806
BLAKE2b-256 a725dfd2cfdb9d7d382b7c2493dad7e7b0398dc612d48a942422fe36f8c4e6cc

See more details on using hashes here.

File details

Details for the file layernext-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: layernext-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 42.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for layernext-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7c5a34ff7624e9fccb5533eee134b47ecc412a359865cb3ebf172c02187dd904
MD5 a1fd20fcf39bf2771eed56d91a554fda
BLAKE2b-256 be086f610c0ec0799188c987f904601207417d96a3638ea98b97b0e80b3d0927

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page