No project description provided
Project description
LayoutPrompter: Awaken the Design Ability of Large Language Models (NeurIPS2023)
LayoutPrompter is a versatile method for graphic layout generation, capable of solving various conditional layout generation tasks (as illustrated on the left side) across a range of layout domains (as illustrated on the right side) without any model training or fine-tuning.
Installation
pip install git+https://github.com/creative-graphic-design/layout-prompter
Results
We conduct experiments on three groups of layout generation tasks, including
- constraint-explicit layout generation
- content-aware layout generation
- text-to-layout
Below are the qualitative results.
Constraint-Explicit Layout Generation
Content-Aware Layout Generation
Text-to-Layout
Installation
- Clone this repository
git clone https://github.com/microsoft/LayoutGeneration.git
cd LayoutGeneration/LayoutPrompter
- Create a conda environment
conda create -n layoutprompter python=3.8
conda activate layoutprompter
- Install PyTorch and other dependencies
conda install pytorch=1.13.1 torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt
pip install -e src/
Datasets
We use 4 datasets in this work, including RICO
, PubLayNet
, PosterLayout
and WebUI
.
They can be downloaded from HuggingFace using the following commands:
git lfs install
git clone https://huggingface.co/datasets/KyleLin/LayoutPrompter
Move the contents to the dataset
directory as follows:
dataset/
├── posterlayout
├── publaynet
├── rico
├── webui
Notebooks
We include three jupyter notebooks here, each corresponding to a type of layout generation task. They all consist of the following components:
- Configuration
- Process raw data
- Dynamic exemplar selection
- Input-output serialization
- Call GPT
- Parsing
- Layout ranking
- Visualization
Try it!
Citation
If you find this code useful for your research, please cite our paper:
@inproceedings{lin2023layoutprompter,
title={LayoutPrompter: Awaken the Design Ability of Large Language Models},
author={Lin, Jiawei and Guo, Jiaqi and Sun, Shizhao and Yang, Zijiang James and Lou, Jian-Guang and Zhang, Dongmei},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file layout_prompter-0.1.0.tar.gz
.
File metadata
- Download URL: layout_prompter-0.1.0.tar.gz
- Upload date:
- Size: 22.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.4 Linux/6.5.0-1022-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe567afb4aaef286d0c5f1a689ebbdf363251d21d41665f14af7b11fac46b1b2 |
|
MD5 | e0b055f354b4a55a76186c6691163950 |
|
BLAKE2b-256 | 8cd15e1491888696041638f483412b5883dbfb4daf4aad623accd7243826a059 |
File details
Details for the file layout_prompter-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: layout_prompter-0.1.0-py3-none-any.whl
- Upload date:
- Size: 27.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.4 Linux/6.5.0-1022-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8a041a69c2543d2fa46e09a684b373fe92af42f92dbc8fa65d8aab5a8a076fd7 |
|
MD5 | 4043342dcb0b71588c6541885812583e |
|
BLAKE2b-256 | fcbbd78ba19dff475c07d19f1e36ce98a685cdada14bc4b05998e3a055482830 |