Skip to main content

Java inspired streams in Python

Project description

Python lazy_streams

Inspired by Java 8's streams, this Python module provides a fluent syntax for manipulating and querying Python lists. It's called lazy_streams because it lazy-evaluates the requests to increase performance and decrease resource requirements.

Here's a quick example:

>>> from lazy_streams import stream
>>> data = range(100)
>>> s = stream(data)
>>> print s \
...     .reverse() \
...     .filter(lambda x: (x+1)%2 == 0) \
...     .map(lambda x: x*x) \
...     .map(lambda x: "Item %d" % x) \
...     .last_or_else("Nothing here")
Item 1
>>>

Lazy_streams is intended to be a small (single-file), light-weight, simple implementation that depends only the Python standard library.

As you can see from the above example, you can stack multiple manipulations on top of each other. The module will optimize the execution to only perform the operations on the elements of the list that are involved in the eventual output.

Also, the original list will remain unchanged as the output of each operation simply returns a delta from the original value.

Operations on a LazyStream can be categories into two groups: Terminal operations and Non-terminal operations. Terminal operations result in a concrete result (a value, a list, etc.). Non-terminal operations will return a new LazyStream.

Terminal operations

to_list(threads=0) - Will convert the stream back to a list. Returns a list. If threads is 0, to_list will create the list serially on the main thread. If threads is greater than 0, to_list will be generated in parallel using the number of threads specified.

>>> print(stream(range(10)).to_list())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>

*NOTE: using threads is computationally expensive and won't necessarily speed up your work. It is intended to be used to speed up time-consuming map and filter processes (making web service calls for example). If your map/filter functions aren't doing anything time- sensitive, you'll probably get more speed leaving threads at 0.

to_string(separator=', ', threads=0) - Will convert the list to a string by joining the elements using the given separator (defaults to ', '). Returns a string.

>>> print(stream(range(10)).to_string())
'0, 1, 2, 3, 4, 5, 6, 7, 8, 9'
>>> print(stream(range(10)).to_string('-'))
'0-1-2-3-4-5-6-7-8-9'
>>>

first_or_else(or_else=None) - Will return the first item in the resulting list. If the resulting list is empty, returns the value of or_else. Returns a value.

>>> print(stream([5, 6, 7]).first_or_else())
5
>>> print(stream([]).first_or_else())
None
>> print(stream([]).first_or_else(-1))
-1
>>>

last_or_else(or_else=None) - Will return the last item in the resulting list. If the resulting list is empty, returns the value of or_else. Returns a value.

>>> print(stream([5, 6, 7]).first_or_else())
7
>>> print(stream([]).first_or_else())
None
>> print(stream([]).first_or_else(-1))
-1
>>>

reduce(func, threads=0) - Calls Python's reduce function passing it the given function and the resulting list of the stream. Returns a value.

>>> print(stream(range(5)).reduce(lambda x,y: x-y))
-10
>>>

min(key=None, threads=0) - Sorts the list using the given sort key and then returns the first item in the rsulting list. Returns a value.

>>> print(stream(range(3)).min())
0
>>> print(stream(['Matilda', 'Tom', 'Sally']).min(key=lambda x: len(x)))
'Tom'
>>>

max(key=None, threads=0) - Sorts the list using the given sort key and then returns the last item in the resulting list. Returns a value.

>>> print(stream(range(3)).max())
2
>>> print(stream(['Matilda', 'Tom', 'Sally']).max(key=lambda x: len(x)))
'Matilda'
>>>

size(threads=0) - Returns the number of items in the Streams's resulting list.

>>> print(stream([5, 6, 7]).size())
3
>>>

Non-terminal operations

Non-terminal operations return a new LazyStream as their result. This allows you to stack multiple operations up together.

#!/usr/bin/env python
from lazy_streams import stream

names = stream(['Bob', 'Sally', 'Jane', 'Joe', 'Emily', 'Jake', 'John']) \
    .filter(lambda x: len(x) > 3) \
    .sort() \
    .map(lambda x: "First name: %s" % x) \
    .to_string("\n")
print(names)

... outputs ...

First name: Emily
First name: Jake
First name: Jane
First name: John
First name: Sally

take(num_items) - Will return a new LazyStream that only contains the first num_items item from the called upon stream.

>>> print stream([1, 2, 3, 4]).take(2).to_list()
[1, 2]
>>>

flatten() - Will flatten a list-of-lists to a flat list.

>>> print(stream([1, [2, 3], 4, [[5, 6], 7]]).flatten().to_list())
[1, 2, 3, 4, 5, 6, 7]
>>>

sort(key=None, reverse=False) - Will return a sorted Stream using the given key. If reverse is true, will reverse the sort.

>>> print(stream([3, 5, 7, 2, 4, 6]).sort().to_list())
[2, 3, 4, 5, 6, 7]
>>> print(stream(['AAA', 'AA', 'AAA', 'A']).sort(key=lambda x: len(x), reverse=True).to_list())
['AAA', 'AAA', 'AA', 'A']

map(func) - Will call func on each item of the stream's list and return the result.

>>> print(stream([2, 3, 4]).map(lambda x: x*2).to_list())
[4, 6, 8]
>>>

filter(func) - Will call func on each item of the stream's list and only keep the ones where func reutrns True.

>>> print(stream(['A', 'AAAAA', 'AAA', 'AA']).filter(lambda x: len(x) > 2).to_list())
['AAAAA', 'AAA']
>>>

reverse() - Will simply reverse the order of the items. This operation does not perform any sorting. It simply mirrors the values.

>>> print(stream(['Gus', 'Joe', 'Sally', 'Mike', 'Jane']).reverse().to_list())
['Jane', 'Mike', 'Sally', 'Joe', 'Gus']
>>>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lazy_streams-1.0.1.tar.gz (44.6 kB view hashes)

Uploaded Source

Built Distribution

lazy_streams-1.0.1-py3-none-any.whl (30.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page