Skip to main content

Time series forecasting with LightGBM

Project description

LazyProphet v0.3.8

Recent Changes

With v0.3.8 comes a fully fledged Optuna Optimizer for simple (no exogenous) regression problems. Classification is ToDo.

A Quick example of the new functionality:

from LazyProphet import LazyProphet as lp
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt

bike_sharing = fetch_openml("Bike_Sharing_Demand", version=2, as_frame=True)
y = bike_sharing.frame['count']
y = y[-400:].values

lp_model = lp.LazyProphet.Optimize(y,
                                seasonal_period=[24, 168],
                                n_folds=2, # must be greater than 1
                                n_trials=20, # number of optimization runs, default is 100
                                test_size=48 # size of the holdout set to test against
                                )
fitted = lp_model.fit(y)
predicted = lp_model.predict(100)

plt.plot(y)
plt.plot(np.append(fitted, predicted))
plt.axvline(400)
plt.show()

Introduction

A decent intro can be found here.

LazyProphet is a time series forecasting model built for LightGBM forecasting of single time series.

Many nice-ities have been added such as recursive forecasting when using lagged target variable such as the last 4 values to predict the 5th.

Additionally, fourier basis functions and penalized weighted piecewise linear basis functions are options as well!

Don't ever use in-sample fit for these types of models as they fit the data quite snuggly.

Quickstart

pip install LazyProphet

Simple example from Sklearn, just give it the hyperparameters and an array:

from LazyProphet import LazyProphet as lp
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt

bike_sharing = fetch_openml("Bike_Sharing_Demand", version=2, as_frame=True)
y = bike_sharing.frame['count']
y = y[-400:].values

lp_model = lp.LazyProphet(seasonal_period=[24, 168], #list means we use both seasonal periods
                          n_basis=4, #weighted piecewise basis functions
                          fourier_order=10,
                          ar=list(range(1,25)),
                          decay=.99 #the 'penalized' in penalized weighted piecewise linear basis functions
                          )
fitted = lp_model.fit(y)
predicted = lp_model.predict(100)

plt.plot(y)
plt.plot(np.append(fitted, predicted))
plt.axvline(400)
plt.show()

alt text

If you are working with less data or then you will probably want to pass custom LightGBM params via boosting_params when creating the LazyProphet obj.

The default params are:

boosting_params = {
                        "objective": "regression",
                        "metric": "rmse",
                        "verbosity": -1,
                        "boosting_type": "gbdt",
                        "seed": 42,
                        'linear_tree': False,
                        'learning_rate': .15,
                        'min_child_samples': 5,
                        'num_leaves': 31,
                        'num_iterations': 50
                    }

WARNING Passing linear_tree=True can be extremely unstable, especially with ar and n_basis arguments. We do tests for linearity and will de-trend if necessary. **

Most importantly for controlling the complexity by using num_leaves/learning_rate for complexity with less data.

Alternatively, you could try out the method:

tree_optimize(y, exogenous=None, cv_splits=3, test_size=None)

In-place of the fit method. This will do 'cv_splits' number of Time-Series Cross-Validation steps to optimize the tree using Optuna. This method has some degraded performance in testing but may be better for autoforecasting various types of data sizes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

LazyProphet-0.3.9-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file LazyProphet-0.3.9-py3-none-any.whl.

File metadata

  • Download URL: LazyProphet-0.3.9-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for LazyProphet-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 1e297deb3c7ce035594c0644c65aea8daf908957c8f413784344687587f94e2e
MD5 3c73cc44b3f838e64c7d8d2075a434e8
BLAKE2b-256 59d1935fdd0be9c2788857af1db3e7f2dad2fe967d39b0b75e5362899c8355a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page