Gaussian & Binomial distributions
Project description
lb-dsnd-distributions package
This package provides the Gaussian distribution and Binomial distribution classes.
-
Gaussian - Gaussian distribution class for calculating and visualizing a Gaussian distribution.
Attributes:
mean (float) - representing the mean value of the distribution. stdev (float) - representing the standard deviation of the distribution. data_list (list of floats) - a list of floats extracted from the data file.
Methods:
calculate_mean() - Function to calculate the mean of the data set. calculate_stdev() - Function to calculate the standard deviation of the data set. plot_histogram() - Function to output a histogram of the instance variable data using matplotlib pyplot library. read_data_file(filename) - Function to read in data from a txt file. The txt file should have one number (float) per line. The numbers are stored in the data attribute. pdf(x) - Probability density function calculator for the gaussian distribution Args: x (float): point for calculating the probability density function Returns: float: probability density function output plot_histogram_pdf(n_spaces = 50) - Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot __add__(other) - Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution __repr__() - Function to output the characteristics of the Gaussian instance
-
Binomial - Binomial distribution class for calculating and visualizing a Binomial distribution.
Attributes:
mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) number of trials
Methods:
calculate_mean() - Function to calculate the mean from p and n calculate_stdev() - Function to calculate the standard deviation from p and n. read_data_file(filename) - Function to read in data from a txt file. The txt file should have one number (float) per line. The numbers are stored in the data attribute. replace_stats_with_data() - Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value plot_bar() - Function to output a histogram of the instance variable data using matplotlib pyplot library. pdf(k) - Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output plot_bar_pdf() - Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot __add__(other) - Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution __repr__() - Function to output the characteristics of the Binomial instance.
Files
- Generaldistribution.py - contains Distribution class, its attributes and methods being inherited by Gaussian and Binomial class.
- Gaussiandistribution.py - contains Gaussian class, its attributes and methods stated above in lb-dsnd-distributions package summary.
- Binomialdistribution.py - contains Binomial class, its attributes and methods stated above in lb-dsnd-distributions package summary.
Installation
- The code should run with no issues using Python versions 3.*.
- No extra besides the built-in libraries from Anaconda needed to run this project Math matplotlib
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for lb_dsnd_distributions-0.0.3.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 981df0b02de8ab8cfab208a9a673410748f34d21860a975b668cd572992af130 |
|
MD5 | 4d796a7232f3da08e2e99b1ee4a5bb36 |
|
BLAKE2b-256 | d3745bacb95a57788b2d2c034730ae598b021102a4d4d6f02610cf4427fc3bc0 |
Close
Hashes for lb_dsnd_distributions-0.0.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07ff8b0fe472ad539319c0a1d0b4a883a6d5a21b93c26d125566eb33bde627ee |
|
MD5 | fa14f2acf8efa42e11c3c64898ad52ce |
|
BLAKE2b-256 | 9552336e70e2bfc7a3f9253accf7ff927d21ce43ccf968d760828d33b03db320 |