Skip to main content

Code Generation for Lattice Boltzmann Methods

Project description

lbmpy

Binder Docs pipeline status coverage report

Run fast fluid simulations based on the lattice Boltzmann method in Python on CPUs and GPUs. lbmpy creates highly optimized LB compute kernels in C or CUDA, for a wide variety of different collision operators, including MRT, entropic, and cumulant schemes.

All collision operators can be easily adapted, for example, to integrate turbulence models, custom force terms, or multi-phase models. It even comes with an integrated Chapman Enskog analysis based on sympy!

Common test scenarios can be set up quickly:

from pystencils import Target
from lbmpy.session import *

ch = create_channel(domain_size=(300, 100, 100), force=1e-7, method=Method.TRT,
                    equilibrium_order=2, compressible=True,
                    relaxation_rates=[1.97, 1.6], optimization={'target': Target.GPU})

To find out more, check out the interactive tutorial notebooks online with binder.

Installation

For local installation use pip:

pip install lbmpy[interactive]

Without [interactive] you get a minimal version with very little dependencies.

All options:

  • gpu: use this if a NVIDIA GPU is available and CUDA is installed
  • opencl: use this to enable the target opencl (execution using OpenCL)
  • alltrafos: pulls in additional dependencies for loop simplification e.g. libisl
  • interactive: installs dependencies to work in Jupyter including image I/O, plotting etc.

Options can be combined e.g.

pip install lbmpy[interactive,gpu,doc]

Documentation

Read the docs here and check out the Jupyter notebooks in doc/notebooks.

Contributing

To see how to open issues, submit bug reports, create feature requests or submit your additions to lbmpy please refer to contribution documentation of pystencils since lbmpy is heavily build on pystencils.

Many thanks go to the contributors of lbmpy.

Please cite us

If you use lbmpy in a publication, please cite the following articles:

Overview:

Multiphase:

  • M. Holzer et al, Highly efficient lattice Boltzmann multiphase simulations of immiscible fluids at high-density ratios on CPUs and GPUs through code generation. The International Journal of High Performance Computing Applications, 2021. https://doi.org/10.1177/10943420211016525

Further Reading

  • F. Hennig et al, Automatic Code Generation for the Cumulant Lattice Boltzmann Method. ICMMES, 2021. Poster Link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lbmpy-1.3.6.tar.gz (19.6 MB view details)

Uploaded Source

File details

Details for the file lbmpy-1.3.6.tar.gz.

File metadata

  • Download URL: lbmpy-1.3.6.tar.gz
  • Upload date:
  • Size: 19.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for lbmpy-1.3.6.tar.gz
Algorithm Hash digest
SHA256 99cc37c028e5a35b0c58dba6bc18611169ae843a04c0e3fe0c972eb78cbe3382
MD5 9139d54df08ad2b68996aa20fbc2e7a7
BLAKE2b-256 cc4c8f5bebc87b0055511814af8561aaa02956899f4d40b6532b1ef1ed0b4e73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page