Skip to main content

Python implementation of Continuous Change Detection

Project description

PyCCD - Python Continuous Change Detection

pyccd creates change segments from Landsat timeseries data

Using PyCCD

>>> import ccd
>>> results = ccd.detect(dates, blues, greens, reds, nirs, swir1s, swir2s, thermals, qas, prev_results)
>>>
>>> type(results)
<class 'dict'>
>>>
>>> results
{algorithm: 'pyccd:x.x.x',
 processing_mask: [bool, bool, ...],
 snow_prob: float,
 water_prob: float,
 cloud_prob: float,
 change_models: [
     {start_day: int,
      end_day: int,
      break_day: int,
      observation_count: int,
      change_probability: float,
      curve_qa: int,
      blue:      {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float},
      green:     {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float},
      red:       {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float},
      nir:       {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float},
      swir1:     {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float},
      swir2:     {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float},
      thermal:   {magnitude: float,
                  rmse: float,
                  coefficients: (float, float, ...),
                  intercept: float}}
                 ]
}

Default processing parameters can be overridden using a dictionary (see parameters.yaml for valid keys):

>>> import ccd
>>> params = {'QA_BITPACKED': False,
              'QA_FILL': 255,
              'QA_CLEAR': 0,
              'QA_WATER': 1,
              'QA_SHADOW': 2,
              'QA_SNOW': 3,
              'QA_CLOUD': 4}
>>> results = ccd.detect(dates, blues, greens, reds, nirs, swir1s, swir2s, thermals, qas, params=params)

Installing

System requirements (Ubuntu)

  • python3-dev
  • gfortran
  • libopenblas-dev
  • liblapack-dev
  • graphviz
  • python-virtualenv

System requirements (Centos)

  • python3-devel
  • gfortran
  • blas-dev
  • lapack-dev
  • graphviz
  • python-virtualenv

It's highly recommended to do all your development & testing in a virtual environment.

user@dev:/home/user/$ mkdir pyccd
user@dev:/home/user/$ cd pyccd
user@dev:/home/user/pyccd$ virtualenv -p python3 .venv
user@dev:/home/user/pyccd$ . .venv/bin/activate
(.venv) user@dev:/home/user/pyccd$
Install
$ pip install -e .[test,dev,docs,deploy,profile]

Testing

$ pytest
$ pytest --profile
$ pytest --profile-svg

# pytest-watch
$ ptw

Make targets

$ make build
$ make tests
$ make docs
$ make deploy
$ make profile

Profiling

Decorate the function to be profiled with @profile and run make profile. Remove decorations before committing code.

Contributing

Before committing to this repository, run the following command.

git config --local commit.template .gitmessage

This will add the LCMAP commit template to git commit.

jira/lcmap-xxxx: Title
Description

Contributions are most welcome.

  1. Open an issue and discuss the change.
  2. Branch from major version and name it after the issue
    • jira/lcmap-xxxx
  3. Write automated tests for your changes and make sure all tests pass.
  4. Update documentation in project.
  5. Submit pull request to the appropriate branch (e.g. 1,x)

Versions

PyCCD previously followed MAJOR.MINOR.PATCH.LABEL semantic versioning but has changed to date based semantic versioning, thus: YYYY.MM.DD[.HH.MM.SS][-label].

PyCCD's version is defined by the ccd/version.py/__version__ attribute.

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lcmap-pyccd-2021.7.19.tar.gz (32.9 kB view details)

Uploaded Source

Built Distribution

lcmap_pyccd-2021.7.19-py3-none-any.whl (31.2 kB view details)

Uploaded Python 3

File details

Details for the file lcmap-pyccd-2021.7.19.tar.gz.

File metadata

  • Download URL: lcmap-pyccd-2021.7.19.tar.gz
  • Upload date:
  • Size: 32.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for lcmap-pyccd-2021.7.19.tar.gz
Algorithm Hash digest
SHA256 2fddb3421e62a530eb8530aaf22a52033cdc8b5f412cb6f453cce48bcfad02f2
MD5 53b39329ba2cd286194e79a1d0ba2d0d
BLAKE2b-256 eaa922c1c500b4e8e26b99655c22e53dfa58c3f11e844bfe123327f7559acc34

See more details on using hashes here.

File details

Details for the file lcmap_pyccd-2021.7.19-py3-none-any.whl.

File metadata

  • Download URL: lcmap_pyccd-2021.7.19-py3-none-any.whl
  • Upload date:
  • Size: 31.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for lcmap_pyccd-2021.7.19-py3-none-any.whl
Algorithm Hash digest
SHA256 605230eaaeccc6d7273dc7d0675272e309819b58e70376e7f55a83dafc1fab41
MD5 81da25c5c6e831d6b8a72c891555a1d5
BLAKE2b-256 9e932ecbadaa8713491feb48d08014e29490e475bf4896e230bc5dac1e08146b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page