Skip to main content

Efficient 3D rigid and affine image registration

Project description

lcreg - Efficient registration of large 3D images

Rigid and affine registration of large scalar 3D images is an import step for both medical and non-medical image processing. The distinguishing feature of lcreg is its capability to efficiently register 3D images even if they do not fit into system memory. lcreg is based on the optimisation of the local correlation similarity measure [1] using a novel image encoding scheme fostering on-the-fly image compression and decompression [2].

Tutorials, samples and bcolz binaries

The lcreg tutorial provides a step by step guide for the installation and practical application of the software and is complemented by sample data and configuration files (156 MB). Furthermore, binary installers for the bcolz package have been created in order to support the installation of lcreg with recent Python versions. These ressources can be downloaded from here.

Please give feedback

Please send comments, questions and general feedback to the email address of the project which is lcreg@hs-augsburg.de or use the corresponding functionality of the ResearchGate project page.

Acknowledgements

Many thanks to Karl-Heinz Kunzelmann for his support, many helpful discussions and for making dental test images available. This work benefited from the use of ITK-SNAP, bcolz, numpy scipy and cython. The University of Applied Sciences, Augsburg, in particular the Faculty of Computer Science supported this project by granting sabbatical leaves. Special thanks to Gisela Dachs, Andreas Gärtner, Evi Köbele, Stefan König, Dominik Lüder, Thomas Obermeier and Sigrid Podratzky for acquiring test images and for keeping computers up and running.

References

[1] T. Netsch, P. Rösch, A. v. Muiswinkel and J. Weese: Towards Real-Time Multi-Modality 3-D Medical Image Registration. Eight IEEE International Conference on Computer Vision, ICCV (2001) 718-725,
DOI: 10.1109/ICCV.2001.937595
[2] P. Rösch and K.-H. Kunzelmann: Efficient 3D rigid Registration of Large Micro CT Images. International Journal of Computer assisted Radiology and Surgery 13 (Suppl. 1) (2018) 118–119,
DOI 10.1007/s11548-018-1766-y

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lcreg-1.0.1.tar.gz (223.1 kB view details)

Uploaded Source

Built Distributions

lcreg-1.0.1-cp311-cp311-win_amd64.whl (145.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

lcreg-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (695.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lcreg-1.0.1-cp311-cp311-macosx_13_0_arm64.whl (185.5 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

lcreg-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl (178.6 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

lcreg-1.0.1-cp310-cp310-win_amd64.whl (146.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

lcreg-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (675.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lcreg-1.0.1-cp310-cp310-macosx_13_0_arm64.whl (184.9 kB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

lcreg-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl (178.6 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

lcreg-1.0.1-cp39-cp39-win_amd64.whl (147.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

lcreg-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (681.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lcreg-1.0.1-cp39-cp39-macosx_13_0_arm64.whl (186.4 kB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

lcreg-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl (180.2 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

lcreg-1.0.1-cp38-cp38-win_amd64.whl (146.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

lcreg-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (687.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lcreg-1.0.1-cp38-cp38-macosx_13_0_arm64.whl (186.2 kB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

lcreg-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl (179.9 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file lcreg-1.0.1.tar.gz.

File metadata

  • Download URL: lcreg-1.0.1.tar.gz
  • Upload date:
  • Size: 223.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lcreg-1.0.1.tar.gz
Algorithm Hash digest
SHA256 5067f69d22d7e69d0cbbdfd7611246dce475be241b218767043c50052180aa02
MD5 d914a8510fbc5c5bdf21c234b7c51dbd
BLAKE2b-256 a4cd02cc97f7b766b37c7b00feddd883a8a5a1366960053cf2e94e12aac70846

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lcreg-1.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 145.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lcreg-1.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c33962d8fc1e50897f0b9f9069f8be433e031617dc2632812647bed51d08c943
MD5 3bdece3937feffe7e1ded7b8d4df23d1
BLAKE2b-256 e9c4c9875b6c79a4a141b8792d5ebab0a644e984c530fa1749c59cfaef482a0d

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf8896dc9972f63fa94f3303bf72a90c1ff774cbb496e769e776c1b24a2834ff
MD5 cf7c69935b9a1093fddbaa9e99492dcc
BLAKE2b-256 8d8a622fc8dd06e09cadeb3ed8aa3ab7f58a0c746b5b4b732a78736dfce0428c

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 338f04901ae875973488a9e7810a6d7a9c4d2dc120ae4e41376de98abd8788eb
MD5 ea472f98b0ed5306462501830de0ac85
BLAKE2b-256 d8cb1618d92cd1923dd0f9b439d640ca0d9f0b142dd9f814d200b99af01f6c87

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5dd6c90004bb03edbc24a9992ceb928df034fcaf18be8b9fcaaa981105c994fd
MD5 176ff42185060c1493759ba549d73503
BLAKE2b-256 bf3cca3e7ce37526a5818decf1998dec034947bef147a29fb9699e69205f41fe

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lcreg-1.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 146.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lcreg-1.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 778c7c2945b5c8a7e62845d38e6b039882d53a7df60fec6fd7fd252ff54d8cd2
MD5 55d0a248848fdeb3632158a2b0073c34
BLAKE2b-256 0ab8fd3384839700a9f2112ac3b1d38afe9a64f8293a006653cd6d0b8b369954

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35ec60b040ce2e5d088c108490218cb056f65e48e91dec28f3334c90f3f47cda
MD5 3cf58251d18aaba83e9370a3191c5797
BLAKE2b-256 90c9294c8f33a05d87c6c521f55d7713eeb978ca1392cf1a4b803a3abbd6b879

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 ed93aa20bcada466f235c724e71d6d82837deb81caf344d3cd8abe5a9bd0bcf3
MD5 6dc915e436fef16dd3dc78a56b23737c
BLAKE2b-256 aad98ea0be3253261e17a71736e06bf200330dadc3bca14468ed10bad98e5c13

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64c607a9e8f817d535aa3cdd68c4fc4d2542537631b4c2c9223aca607da2aa1f
MD5 41bdb96b9cd47851e3e950ef953074cf
BLAKE2b-256 319b781dcdbb3fd1e4785590b583e958a647a639733acd221596f4cc5a53d917

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lcreg-1.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 147.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lcreg-1.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e761c61b7e0c0d0689a952fea9cd88ad77ec1b5c5a77cc7a908f3370cf2dea4d
MD5 94dc8abe391bfeeab8d91a5cfd948659
BLAKE2b-256 f41c4d9736547abcc17ef23aa30a782b444d49e6d1bb40bef150d9f770fbd31c

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cedb715124cd5a30d72c47bc63c9eac3031f55bee01108bc1801b142f05097a
MD5 ab75a40bc49db96d1c9cec544b1c93ce
BLAKE2b-256 0f4a5772c74e8918144ac95a78a4a2388fbb6e99f6852e305110bc7f98fad82e

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 f1f464a9cb6365b8eb3b9d15b39183d4ed2f2848f52d825a9ee44da4b3a78bb0
MD5 4c9dbe52d088874d3d840e5e64315b0e
BLAKE2b-256 455491492c798d1388c994805e9111daf1a71b43ea18180a0f35f05ec1569e42

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 569bb02f34f2632a7a33dc86a5f16ca9fa60e24fb0b680dddd10f5ed1fb46f90
MD5 94a3872228cc03f78a489c3163a9cfe7
BLAKE2b-256 2f7464f802b25112b8ac33b15dc2e32123d343d79a4d43a40eeec018f182cdc2

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lcreg-1.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 146.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lcreg-1.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dc088963d7269454297242a06430aadabaf9e929af7dc65dc497ad5c0a7820c3
MD5 1970c7fdd68bb3dcb644dcebae162861
BLAKE2b-256 00b403f77ee2336262382d61613453aa27d298646d7004393c50e25314183b25

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7535f73edee8e79850c230bde8b270e06e10b1ec21d43fe5ec3640245373f2dd
MD5 c3c9ff7e3ed4a30a594b2debd3dd9199
BLAKE2b-256 77ceac6ef286617ef0fa23ba3db77e29e34aef255a878a5e7046ce52e20e9692

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 c7a32774ef5f1aa86cc1b55c8213448d3731a8ddb6159fb24e5a673c5fd6c394
MD5 15e5d9b5b9057ae6fa65fbac8ef8d1b3
BLAKE2b-256 b402b2be2707cc8bed7471196227b1233d35a2da4f0a6f460651e02983ec065d

See more details on using hashes here.

File details

Details for the file lcreg-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for lcreg-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 165ec5e89e5d6c7525ea0ed4e6bf02fa386674787a0bd3444126d2c7920d92e3
MD5 f4c9cedf6ff0227a12ff7c82393823c0
BLAKE2b-256 dbc1621c04973369d419d1df851adac9f77b1d5ab6abd31bc4765eb545b512c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page