Skip to main content

Leap Labs Interpretability Engine

Reason this release was yanked:

Errors with latest release and version of Torch

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY", "input_dim":[3, 224, 224]})

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For best results, you might have to tune the config a bit.

Results

The generate function returns a pandas dataframe, containing prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations, or log directly to your weights and biases dashboard.

Supported Packages

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch. (Defaults to pytorch if unspecified.)

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
    "input_dim":[3, 224, 224]
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Multiple Prototype Generation

To generate multiple prototypes for the same target class, simply repeat the index of the target class, e.g.

target_classes = [0, 0, 0]

will generate three prototypes for the 0th class.

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Typically, you'll only change a few of these – though feel free to experiment! The key ones are as follows:

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000

Here are all of the config options currently available:

config = {
            "use_alpha": True,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.005,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 1000,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "wandb_api_key": None,
            "wandb_entity": None,
        }
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: True
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • seed (int): Random seed for initialisation.

    • Default: 0
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • transform (str): If your model is trained on inputs with non-location-independent features – for example, brain scans, setting this to None will probably result in more sensible prototypes. VERY experimental. You can also experiment with the following options: ['s', 'm', 'l', 'xl'].

    • Default: xl
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. 0n a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.10-cp312-cp312-win_arm64.whl (634.3 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.10-cp312-cp312-win_amd64.whl (762.5 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.10-cp312-cp312-win32.whl (686.8 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.10-cp312-cp312-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp312-cp312-musllinux_1_1_i686.whl (4.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.10-cp312-cp312-macosx_10_9_universal2.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.10-cp311-cp311-win_arm64.whl (648.3 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.10-cp311-cp311-win_amd64.whl (772.9 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.10-cp311-cp311-win32.whl (701.0 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.10-cp311-cp311-musllinux_1_1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp311-cp311-musllinux_1_1_i686.whl (4.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.10-cp311-cp311-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.10-cp310-cp310-win_arm64.whl (643.4 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.10-cp310-cp310-win_amd64.whl (767.3 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.10-cp310-cp310-win32.whl (700.9 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.10-cp310-cp310-musllinux_1_1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp310-cp310-musllinux_1_1_i686.whl (4.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.10-cp310-cp310-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.10-cp39-cp39-win_arm64.whl (645.1 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.10-cp39-cp39-win_amd64.whl (768.8 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.10-cp39-cp39-win32.whl (702.5 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.10-cp39-cp39-musllinux_1_1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp39-cp39-musllinux_1_1_i686.whl (4.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.10-cp39-cp39-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.10-cp38-cp38-win_amd64.whl (783.4 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.10-cp38-cp38-win32.whl (712.3 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.10-cp38-cp38-musllinux_1_1_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp38-cp38-musllinux_1_1_i686.whl (5.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.10-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.10-cp37-cp37m-win_amd64.whl (755.9 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.10-cp37-cp37m-win32.whl (689.9 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp37-cp37m-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.10-cp36-cp36m-win_amd64.whl (810.2 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.10-cp36-cp36m-win32.whl (717.3 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.10-cp36-cp36m-musllinux_1_1_i686.whl (3.6 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.10-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.6 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

File details

Details for the file leap_ie-0.0.10-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 634.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 09960a318414237587147a016afc24df70ab50a94fe05a36bb151a057d7762eb
MD5 4c65bc7fd6e9c9709f0ee4bac35792a1
BLAKE2b-256 9e6b1eaa8edd7ee3eb3bc37e3e92f497c9747d3ab89708ebc5b9b1242d7cc624

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 762.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d98f8a6c166c3b360098831dba4cf0f87326cf8c82aea5adbb6e29876dd9d274
MD5 322d88ebef3d4287a110335097e3a313
BLAKE2b-256 0cf9914722328526566f08231c6603ec34278dfb33bfccb2c4be45095b89d4ff

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp312-cp312-win32.whl
  • Upload date:
  • Size: 686.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d4c8bcd88ff2c965d28b9164db19592340ba01ae252a36ccfdcca13ebaedc9da
MD5 0fe52679f938769281db0368acc64b2d
BLAKE2b-256 cd59fbd90e9eea19cd9f5a7c82ef613cef9b5a99d8ae131239682d4383e11a18

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d1fb36719b5201e3393c24cea8b346d77940cc36e8eab40c3aaf00a061cd2871
MD5 e16dd635b708b011462002ea5d3e4900
BLAKE2b-256 ed47c8b83a0efadda9bce0b83b9892c675f990de668d36e325a1c9fdac43b8c4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2437fee30cbb43b57f5d5d84f4027115db4e74b295d9a9b8f8f17dfa5e6a2b76
MD5 1b13dd2574096b53819ab21622b0f29a
BLAKE2b-256 ce48f848095872899eee02c44b9a334bfa75da80566344b7ad2486882e85ae5d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7aa675ddd97acb2a6c3a62ef851b029feffe8223373c8a1009f70cd7d993e25
MD5 ade25474f2d65a042218ca795debce71
BLAKE2b-256 333f8377df74b4ef37fdc1006f1c7d231d29cf24bb996867eaae74cc259a5cee

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 52dec790c30cb56a46f76c23d36a78ccb826814344211e45ad0b7ea2d5c14b12
MD5 9e673f03808d42ec55b67a0dc9785fd2
BLAKE2b-256 696b139692ef946a51b0b552bc4830c0ae3da8b84f09caa2de70968a8dd5a040

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b8d3097e26e5a3bfac8002655170f845139fcb3b0cb6bb3a39cd5e87294c39c9
MD5 a0b12fcc7185469870084bc3ee89847f
BLAKE2b-256 cd07fea5ec4424343750f7acd9bff9f7f228040544bf516c54e7d1754d477ccb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 648.3 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 a2d9868002c0e69ac15938772e54001a1a97a4fa91bc3417bb684251244a1cdf
MD5 21e2eb5913afb3360355e3a1e419a53a
BLAKE2b-256 930f0557d2859567a345143e9744df598725f6ce46ee207f25b296b0b426dc9b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 772.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d7c8032b92cde92f9f2e714577dea6310d0a2dd16a4b89f5e503ea413eabab98
MD5 5188488a2e502c68019c056e897a033f
BLAKE2b-256 c739840cb8fc8193d36e0b0121415f28d7f8c3988c5667f06ea45218ef72442a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp311-cp311-win32.whl
  • Upload date:
  • Size: 701.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8f560734a9d3288f519880b755af3b0c4193e92766a097c918b88449f5f450de
MD5 14b7cec9258451b64305b34fa529e2d7
BLAKE2b-256 b0428a18ad46045cb22eff48415cc07f06f5a233946bfdb0ea7af534b5b52c09

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d104598edf4f2eca12c9ed0c794912db970f9d5d656ee0c5d1cfc82cc8ba15e0
MD5 096ef6e723a2e10c670ffb3644379bae
BLAKE2b-256 6152ca9d6ce318e0c233bc6553440565363e6c028124505e56d0de65286b263a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 89149cc11c22c6620df030b79dc14fcca3ac179d62a4a3cc3a43cd4b097ca6fb
MD5 aed17ad78cae2ad3de2d6ba60e2907dd
BLAKE2b-256 57bd621dc0f295afe3579f1910c895c70363e01ff2e28471c4fb916040ee76db

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab441c2fa22fa45410560df217ff6fb9b8c212717a921fc508ec542eac32d7ce
MD5 0a56acd7642a661551bfb510bb865bd2
BLAKE2b-256 7a803ba396488b9e3d50d04b1a71f163ae0453e484ef4f5f0befc056c5a59ebe

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8b173911ff706b601165dc6c361fdd79d5a2df927f7961029c42b81f6eb3173c
MD5 69ecb945c55b21372d668c2c57dd5bba
BLAKE2b-256 f9f7974927dcf81cf590f6caf5034cdf94a6f244b6520a865c3ae3c3b6e93018

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 72f05b66b5ef6d30a00ee4eeb88835a042adf9bc2bd7ef8928600370886df93f
MD5 0f8d73aa267f41a6e48d6031de25080c
BLAKE2b-256 10907a05923791134c169bab95399dc3c07d727f03bceb5ed39d72bb2d7eb87e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 643.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 61595c26326faa1bdc33ecab3172bc743aa020d329b92e1f36d6f5ce7cfede1a
MD5 bf64b7d2180802fcdb8c50bab90ab28d
BLAKE2b-256 5119032a8a4325e4ee22a9fd2d09f1b8397065de7350be38d8984921c3f0e4e8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 767.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f24923a0bf5acc34ace9ec5381e0081fe88ecc4fe6cac4f470d97f930b6042ea
MD5 c39372272d0092fd1fb13d8d2d96fa8e
BLAKE2b-256 ca32edf20dde0fccc7c4d40906c8dcc3faa93ca0544d1d6e602dea3ecf756af9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 700.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bcdeafc5907083ff4f86425d0fc35cc476ed2bedb9fe70c53092887f5d57ed6e
MD5 00aea90a29a299d4a8126471663fe22b
BLAKE2b-256 57e4c8cbcbaf269d1957af9d842897dee63f4000f414c2950ab911f26d8d1509

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 93424c0326c005870ab8931218533887143e726e65da0d6f00e46d80d2e46474
MD5 ef2f5cc3c7cb9ffb84ca258832ceb62c
BLAKE2b-256 8d1d21f720f8a2f4074e50d0ad2c6dda9cb3dde8cee58f172e3537e82b3a06e8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 08e595660ec0ba27dd15f7226f36fc995331b60d26baefa388983fe5cc50c58b
MD5 5239d406f0ed9120367a9050c11368c4
BLAKE2b-256 b1cdfbbcd74f0cbffe17feeb349d075c53087c31da94a5f4153b90ba25b192fd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0db5f6f4b7914f30685f4773836c95bcff76639f40ed643e84352ba5009bfe6e
MD5 e66bd3c43eec189914e65c8dff896648
BLAKE2b-256 b344d71f3b80ccd11ad0276a85cc678e7d5e2fd5a1098787583f17220564db0f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c2487c888b406c87af4e433d4c0804af1fd28e64b3c0bde108eb0fe92bc12f8
MD5 e798220156243a413c9112a3a468ee9d
BLAKE2b-256 45d005c5fef3dca0fa515c2d1769d9c5b04721f9ad0d75d0d0128925aa55af52

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d62ce3c0fc89fe15932ada09e974794c4a4797fdace76fff90dbbcffe52be401
MD5 8a79e4598db12356b0147a11554ad533
BLAKE2b-256 56529b6eba8e3c0a8da08110bdf9dde8aff5c635b9c87265f90fb8317f3d04d9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 645.1 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 203e71392854026ecf3539936331a4515fafa97fe60ed3aeee4b8401f1d4eb77
MD5 8a6a076a7d36075eb70c771d5002b14a
BLAKE2b-256 eb3be068dfa8c73cd23b4cdd6b3681f33be5e82f65f36017acf54133beaf407f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 768.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8aeeb390ade953c6e17cb7dd7a21810e0ac70b9fd6d6261ccc62ebcf26593b7d
MD5 ed2d18e9d6038273b18810b33b24e006
BLAKE2b-256 3e9152767e9b4d0d5703784ff4817f713adad04c7c7737d8f2ff0ed1b632bc16

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 702.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 52066ac597c88e012c2c6365813f641e4db561371bd1ea4664c16d15e961d99e
MD5 28127a3754355a817d15633c491a29c7
BLAKE2b-256 dfc425dd587e3548121e02b832d0a80a63021e2a854059205e1e14f91baf904f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5aaed4f733011250bc1c549651bb6c3d8d9d93b91c29923e82770d7660b57432
MD5 cf2d0c2410a5fb1d6de5a35c02d71df2
BLAKE2b-256 ec622124e6a39cfe8471420088d27e90f6f7a95e04b6a888fb02d5c4163a6151

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4c5760b0b5b34d158a6bd7ff540fea1ff604927183916dfe666e1997161b7113
MD5 85a04fc9bcda4efa3442ccb0dfbe0c97
BLAKE2b-256 5116ca10cc40280253dae3a38c67530140318e9fae34efd883d5b4bf6ef35f6a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5c5bdd0d3bf16631a2c72cb312265dc00995e3c141e54c9ebcfaa6e85d5b0fa
MD5 e78460c52d5efe048d3d25f0556f0c6e
BLAKE2b-256 daf93c3eb4cfda543cb346d615b21da2c85c4c22bfba4e5b9ec3e4c17fd41661

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a98040969051f8a8e8bbb35631d438dd7b3c4fc10bc9e6dd67df24a05fcd762c
MD5 83f4be249cf0a321050b68a6eb848978
BLAKE2b-256 e2291d6b6685ecbf6a9344288c43dab49c91033f70fb7ab4c986e3af7f6f7bb8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6902c2433457e021265100852f8dde40f0a64eae12dba5430128bbc9a604ad31
MD5 a0d4edc8237b314a851a3a59a41f64b7
BLAKE2b-256 bb165540fcd4e05e196b6892cab6103baa75107801fa9d668f4a3a57fbc616b9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 783.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 acbe4169ec21ba3ce6fef4de644c0b7aab0a27789a7dd316c0f8578fa5c1832d
MD5 6d2dd38e1cba3ebd4e240de285b7443b
BLAKE2b-256 821d3510f1403f88b627246d9d6b1c7571541ec362093ab727c0260fa1a32148

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 712.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6717fcebf9c547918dc44a4809a56463a6c90ca3f860a16b017ae3914f975818
MD5 f557cfd487cf81479f806f258d960237
BLAKE2b-256 4658fa9cf6b6d44ff52a962957618d33d454d1918eee2e517ff983fe4c4b6386

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 795230c114a0e507bfabd970875d81e554a6725923cff5f19bf7cc1eba911b92
MD5 37ef0b5985f2caba0fef1c363efb8597
BLAKE2b-256 79e65d35d2149fbff1215c55a7e754866032c2623f01f2e735eb5fe9ce760653

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f7c1ca3f408dc188cda9600cbe66b0ec419ac790cbfe09e5938494f789b335e1
MD5 92175fa88180dc599b61d62e93856b63
BLAKE2b-256 85c6db57931e260edebee88ff6f8ec9ffd0f0f3a8ae3b697cb67df7fde26300e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f646b431dcb53167c195e268831ff8fca9b07b4e74e85660aa55e663938e9b1
MD5 2b40af30194e4fdf7428f6e782c8a703
BLAKE2b-256 9aa0f54d3fa3b1c7b3e4f4fe6b9a890cdbb50a40295ed49d6b551d91ddfe96ac

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c30d938958cc5b4e154358434fe5b84f71ab98b5473d849b2344da8d6b4e1987
MD5 382d480fcae6256a395536a4b8bb40fa
BLAKE2b-256 3c94204d8b29b9cb8db409c85085dfa185105979323cf5365d730b8532f89e8a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 23f3c3ae6ba9b61a102fc22dfa1018ea1dd9b20868b7809e317bef114a4ebcfd
MD5 4f3f0b9e0bb836f96196e0dd924c106c
BLAKE2b-256 9c849eb20591e7231ec8630852b5f39edd86592a2ddefeb6a550a27f3d41d4f2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 755.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1e7ac52ded07ba867ee299bd9865753b781b3cd61b8ed68a7297251a9bab8711
MD5 d249c47bfcfaafee941592b7e644fb93
BLAKE2b-256 d29aa7c2dd7ae872458dec8240046b090ce55c78da7d999ad45e6c409a426836

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 689.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 14e63dab1ad8e552edb9f512f264c09400defd9234749e90a36032ff84bec9d7
MD5 acc26df969fc4dea3cfa4f126be67817
BLAKE2b-256 cb95f5fd276c9a4ca32f1ba0002d3b5140f8669e45db816f5035746f491ad647

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 86fd8940c266f277266c0f2962276c7211b7e86a69719e42f86403adfcb6d1c9
MD5 621c0968f83c2969864cae8a6be025ce
BLAKE2b-256 f229aeab78935b969432e90bdbec1e4d360debb27d8eb312181f8474b1685fb2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0d7ad78ae12113e3839be1a4765526b58ab790c3feae0652e042f069c37ea411
MD5 c0bca7abd03b680e92e4adecded38a58
BLAKE2b-256 1c7918ebcdb3e76d3a29041feb1a6d0ca44d2bd06ec0c373683f85c4fba1fdc0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9feeebbbc25a1974bfdf688baac1552c06723b1c854a91aacce807572dfc8252
MD5 4b08c3207e903295985126e03bf8722e
BLAKE2b-256 17d3b566d5fb7acfd6922f709f99eb520248e0cc1a67433179312dccab5b6227

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 777c900941387c97b99c8d0467eee10564141e19601135292eedc60f35a5bcc9
MD5 5580b877e66e604bd3c51423cc1767c3
BLAKE2b-256 8abfdd8a5664bce166ced2a122b2ae69fe7e5a4b3782350fe1f2c688f659ffbb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 810.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d6a7395f2b46d942de5e75dd6d955b92db5f329d45fcc8ba3941ccbf93175283
MD5 e0a0d055cc5171db01a3be68da09f1ef
BLAKE2b-256 4c694777ef9a7f430719ec98612352c976c3fc8b619e80416d4a6fa96f62ffb1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.10-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 717.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.10-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6d6b6e8f0a09433ed258f0abab4264352fd01609956f73fc85882c80643e7110
MD5 fe7eefaf8ea6e5e1e2a01554abff2b73
BLAKE2b-256 345bb093c74682cd7c35aa69b0a29230c138f745b35ad7e1a9b5e10eb05f5e44

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5b7a8d1a5541949f65462ca37d188eca13ac247e4cf97e165aa89be800501e8
MD5 3a3bd792405f3f9929dec4a5327643fe
BLAKE2b-256 22d1266cfe425d197cf9ea5f977e41bb1bbfd83c3567bfae8fbaa00f7c28edac

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 31657ac5dcc1ca7fffce400bc6ec4ff13e31aa1e4a3083c089660b1c14702e63
MD5 3f7cec1112ff83dd156ee80f80824833
BLAKE2b-256 4510a44c1261b3f0e31a2a61e2eb99427ffacfff48189debc11fba7987e57334

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad90db331195dc76ca11dc60a73843e3f283dcb0dd94b65a12fc912fc8e175eb
MD5 c567f7acb9d0ef3f07acb087c1ff8299
BLAKE2b-256 279c8f27deb0b54ee30f63f669a329cf7f995db688fdf4e3de3a89c7090ce314

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.10-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.10-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 52c01a1d207a3a67e45cc64d67a04ffda5abd89f31d629e9d69bf9844d9776d5
MD5 67f516dc0fc0cab884b78aac377ed3b7
BLAKE2b-256 dacbadfddaffb6c143a76ae237fc45e7216604138ec42bff630f7c98e9c446c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page