Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY", "input_dim":[3, 224, 224]})

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For best results, you might have to tune the config a bit.

Results

The generate function returns a pandas dataframe, containing prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations, or log directly to your weights and biases dashboard.

Supported Packages

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch. (Defaults to pytorch if unspecified.) Tensorflow is still faily experimental and will likely require a fair amount of config tuning - sorry! We're working on it.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
    "input_dim":[3, 224, 224]
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Multiple Prototype Generation

To generate multiple prototypes for the same target class, simply repeat the index of the target class, e.g.

target_classes = [0, 0, 0]

will generate three prototypes for the 0th class.

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Typically, you'll only change a few of these – though feel free to experiment! The key ones are as follows:

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000

Here are all of the config options currently available:

config = {
            "use_alpha": False,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.002,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 1000,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "wandb_api_key": None,
            "wandb_entity": None,
        }
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • seed (int): Random seed for initialisation.

    • Default: 0
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • transform (str): If your model is trained on inputs with non-location-independent features – for example, brain scans, setting this to None will probably result in more sensible prototypes. VERY experimental. You can also experiment with the following options: ['s', 'm', 'l', 'xl'].

    • Default: xl
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. 0n a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.11-cp312-cp312-win_arm64.whl (658.8 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.11-cp312-cp312-win_amd64.whl (792.4 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.11-cp312-cp312-win32.whl (714.0 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.11-cp312-cp312-musllinux_1_1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp312-cp312-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.11-cp312-cp312-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.11-cp311-cp311-win_arm64.whl (674.1 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.11-cp311-cp311-win_amd64.whl (802.9 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.11-cp311-cp311-win32.whl (728.3 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.11-cp311-cp311-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp311-cp311-musllinux_1_1_i686.whl (5.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.11-cp311-cp311-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.11-cp310-cp310-win_arm64.whl (669.0 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.11-cp310-cp310-win_amd64.whl (797.2 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.11-cp310-cp310-win32.whl (728.0 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.11-cp310-cp310-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp310-cp310-musllinux_1_1_i686.whl (4.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.11-cp310-cp310-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.11-cp39-cp39-win_arm64.whl (670.6 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.11-cp39-cp39-win_amd64.whl (798.8 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.11-cp39-cp39-win32.whl (729.5 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.11-cp39-cp39-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp39-cp39-musllinux_1_1_i686.whl (4.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.11-cp39-cp39-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.11-cp38-cp38-win_amd64.whl (812.8 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.11-cp38-cp38-win32.whl (739.4 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.11-cp38-cp38-musllinux_1_1_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp38-cp38-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.11-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.11-cp37-cp37m-win_amd64.whl (785.8 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.11-cp37-cp37m-win32.whl (716.4 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.11-cp37-cp37m-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp37-cp37m-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.11-cp36-cp36m-win_amd64.whl (842.4 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.11-cp36-cp36m-win32.whl (745.1 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.11-cp36-cp36m-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.11-cp36-cp36m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.11-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

File details

Details for the file leap_ie-0.0.11-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 658.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 d760f78e5ae3d67eff838cba4a52b71f44bbaae940261f412d0c94b29ef7e3f7
MD5 abaabeceb3cde866dce5a4c32ff14003
BLAKE2b-256 b6c659a036be83b30c512ac8b3fea46c09aa68b883ec0e7b7707d7de02abfeb6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 792.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 18d4826cf714c2aca2bd690e52f4d7150ab7df090fa345174e953fea93a84be2
MD5 e78d2d587aaa6860260499d4fe32aa30
BLAKE2b-256 81da40611f7d75770d0536e3c1afc423e34e3784dabca1fe4e26612fce445635

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp312-cp312-win32.whl
  • Upload date:
  • Size: 714.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 daf74bf3f26a6a1377251627df1a5faa624a42435446992bbf98f2d8243ab04c
MD5 a72789643a0e1979f2ef135ac54edfde
BLAKE2b-256 64aeb03d8645ae05e35c2dc56825df9c84d3cd224130c79098bb057915acda33

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1b36bb1367544fc23681f823f5ac88634891b0e96a3ef9aa931292b615a147c9
MD5 47b391c5775ae24c46b4f8643e2a967c
BLAKE2b-256 a95cf3ee475b2038e160a3557ee69cc154830665d54b63bf4801113acc0c2c7e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 59ff0c9604b6cb71af5251ea9a42efdf88a8081ebfb345bbd4975e57a83a95bc
MD5 d9df6da7f24078339c8aec3485d1630c
BLAKE2b-256 0c1b6f61403569032bc9b2904b0284b22bf9d2d21ef6cb108b65153bf0cd7100

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9029ea95916d4ff30ea812587c8ecf453748941d7bc748c9936a2e16ab8d8514
MD5 eb5b5d81d5ccb1ef1a16dad594751e00
BLAKE2b-256 e0f8b4403d8cf49d6335440741e80a1afe3e2a571d915a8f2f254ed939fa5de7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 37cf74beb5afb06367131c0bc95002a49eed750e909ce7961daef98944071c46
MD5 5471ff3928e726c3877a352b14f21164
BLAKE2b-256 5e2483419af6af35266f56dc0c9f7848b35aa6d0b1473c9f248ee33d2f958371

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2f05a591aee8ef369445c2198212e396909ea94f38f8d4211c14ca05e3d004f8
MD5 4081a87d0e338fb488d3b9cab7759617
BLAKE2b-256 a3129cb8feaf81fef189f06de7065162ea3cc10ff68aaa5f27bd0534c9b435ec

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 674.1 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 13675f1d0ac241f6f1b64e06bdf3f94b41b5f6cdf960419c6a31ff0dd3ac55e9
MD5 89201e23de70224c0479a0cc0752631e
BLAKE2b-256 0cd7bb0b371bac7a6a4e85e4933f392b12f996674f5559c57b38f6cd3bf448fc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 802.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 29787c01c2133b66d9e4c2569ed01212bfc31460ab4e0e64129694693b9b82a9
MD5 9cb951c7fcd83551415dac7067897dc0
BLAKE2b-256 464727c57e921b551dca022b7996cbc37e14291f839711953cd41a20737a5e52

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp311-cp311-win32.whl
  • Upload date:
  • Size: 728.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a52927f93547aa4a9389afd82370c7b2b7edb9da9ac8e781fc6978c13dfade94
MD5 d3bb866a3cdab2ff42e2cadf6402db6a
BLAKE2b-256 4ba4229c3c482d818c04c402f4e5a8ed1e6d4892a65da792cef4d1258714ce37

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8003b379b54c66ffa0ea882ac684fe00eb70835c1dec7cb56fb54a831fa92182
MD5 3419be891d6bdf91d6431f4f84863139
BLAKE2b-256 33870fba02030e36f95e6e0c22df762ff9d18c9aff3119755acb4bc51dc72c9c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7fb534dc22f7c586e555c06aa0a2fa04de18b926a4504fa552b0f2f8087fa261
MD5 14c7f1c5fadcf8a6d8cfd785fbede60c
BLAKE2b-256 b3b46a76346fc01a60a2d8cb43edc9f3e256958a15ff0b46d22cb2cbb112c7cb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 602cb0b975f9364de178c2aacef9845842d48df5edeb1314767e290bab3a6875
MD5 6f8b80105cd919eab1821c91077b825f
BLAKE2b-256 af47a06e183248fab0dd116e627ea0f74f9f4dda89835aa867f2b749cd32932d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 353e7e1b82ab46660bde256a1a772428a3941ccc0b882af02a4748d34eeae9d4
MD5 ff7b727a5df72f7d1e961c390f56e9f2
BLAKE2b-256 f7dd6f078e7272fc250c211bc980bba117a8161fe908656640410aa7e0a058e0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f4197e16f867dfada97e6fccdfcb94afa0667831e9ca5f1c94f7d5098da4775c
MD5 9a51094126e8044b0e0f68b41c85a767
BLAKE2b-256 e2a79c38bd2d68dfada0b24152fe82c2ac8976dbdada878ebbe2d0ece77c2de8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 669.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 7360460f5e263a8e056c66c601e53f98b5a4d8f95a0d382a6e0fee6aede47aa6
MD5 17299e01bc561eacf0736fc134bef7ee
BLAKE2b-256 ac12229e2e94e89299eb477adadb37ff3d395a39d89d87fb488ccac87bec9a9b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 797.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 58d730eb41c75cb19c3fda49c2ef479f7523bd3b6c44bf2d008572953c01a1ca
MD5 adeb7e48b2c786e2512acb2af7d4e000
BLAKE2b-256 a2d3351e3b351101b75da722ee1ba237158e27d8f9c50c1303cd78879f74f66a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp310-cp310-win32.whl
  • Upload date:
  • Size: 728.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9f040acd18108975441f3d3b5e0ff7c91a68b189077a87df1b37edfd05f2ac46
MD5 8f1e719440469dad9cf7593e786cdef0
BLAKE2b-256 d1f14204bf45f19aa3ca338824790945685834b5e8af236e21b9d40e61478550

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 52453edb075c2ee7a7267faf1d04f9a442f914009c9af0f197523e943e0ccb71
MD5 01fc16ca5b9224979a55742b8d627a2f
BLAKE2b-256 70e290de95d5f7c61bfdfe3cca409af9e42dc7b28d13b88d013417c8a6a5d00c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8b4f1692aac7f4580477321c6b28cb8762eafee657508f05d4724744fde082a0
MD5 6c4c98247c2d52ed79edb86c8e024bd0
BLAKE2b-256 d3153b19e48208995d9167f8fe37c9135399d87ebec76664a926d119e899aad7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad3f94aa1396ba69fcd787572fae0a68049451fea2da224da7fa86fdd5d2996f
MD5 e5af1d1fbc440b552fca8a80ba8b13ed
BLAKE2b-256 855ffa701ad97e3bb22ab7a0ab715e8253668f9fb7cc7743749563de72830491

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e86c41276a83f2271a917a6ae2234afbc314d1b1fac2636adb62e01d364d4c8
MD5 32569d745f758e852b197f83740653b1
BLAKE2b-256 a8a8adfa7119ae5f8a9a7d34d1a5535043d151d13de505b854821480db77b1a4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3617cfe537eb3b53ffb465064dd493cb8cbc3af954017b90cf2a7770ab79a39b
MD5 41de81fc6e4cda7d57be24f7c126d50b
BLAKE2b-256 380bc9f259ba1c810f3522d5c9af623e557e4c0908199eabdfadfae9ee8590bf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 670.6 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 033ee009c8440f097a6ea2977eb52a9b86b433e7bba8649277e2a7cab029b95d
MD5 7c18f4115a0fc944681b67f90cbb6c47
BLAKE2b-256 c0d126382cc6f881e1b01479be1eb0f622f1c775c73678f384a5ff7f061299c6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 798.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 89da267f70af319e9ce2152c676f58378e7eba57ee8a3a21062324f2f5cfc76f
MD5 c0386e630e05239187c19a0d4c706d4a
BLAKE2b-256 8b99e4f45359e005cbca4d7ca78ba1092e9d813cf6825b11c9f84febf4f048f7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 729.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e7d2fe8e419765ced947e279a2d6d7636d2f5fe0eab50e5a72302ee1a65d660b
MD5 4776b4f44c7a015adc6abf4d6ed19ed2
BLAKE2b-256 a1642c399e96e81efa1ed9c2dc3bdf0e65b65fe0c185519e1de4c5736a9b6ee0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a6c67ca90605f616c85f3cae443b861d3250b4c6db293d562f85c27107c4670a
MD5 1c10b44c7b2bb10836db082a6939bcab
BLAKE2b-256 67b15304ce61a19ffaa315b35b557b1a81a09dac8720d90f247f8674b7384c19

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fc63d79244e0c042c1229ad583d02f9248187f22d6ca002244079c35126d9dbc
MD5 33208eb6a6cb05315c751439f9313b4d
BLAKE2b-256 42b4dba3f477b2155fe249487eb1cf48089a75b53a06881e0cced0648a553265

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb1bc3e29887034c10b551dec80972a328d28b3b78d40ef39181e59d9de6fb69
MD5 2881e8bcec9318e2abfcef6a31e8d817
BLAKE2b-256 9b789b391589c4accaae157f772082d8ff4d9489d128b2aa9d23642357be9c6f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2e2e57fd5fede5cbd630a493125ed1e58935d5e736826f912ead34e31ee2a9cd
MD5 8db80b7eb2d8aaae5e9850bc25b928ac
BLAKE2b-256 dc51fcd2c73dc1bab1ce65f3a7ffad075904d8bff9aaf708458cbccda3bfda65

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 944e141a039cde1411812bfaf7b2a90a0152ce75863b1566a8a68402fc33b99c
MD5 72ee9d3e84da550da70d9c46592f718b
BLAKE2b-256 43302ee4116bd158a81493856b33b977ac3e2a0f84b3133dcfe9e9ddfa821508

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 812.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5f878660991dcca90d2bb9d046abcfc5cb023f8ce180d397850d0e748ac1cec8
MD5 83ee517cfe8cb06a28a4384ec456c79d
BLAKE2b-256 1ed72f36c35329190395d7709b3588d20725b99dddb09e953a5c3ef49a679ebc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 739.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 caadaf43a7a8d05fd10524fcc3bd770a53830ad4a66bd9fbdc2d852400b5f492
MD5 c9d5c4b6a88c484f020f6f87a7ea496a
BLAKE2b-256 3aac7fb4716044714ca4958e2b3c302cf65784db860f139ba29f45a7416467a7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 107d353acb7d1cbc95de01f9f9f66e389f8af02ef38b1b3047af2c60801e4240
MD5 701816557f0cefc2c00d558282c01066
BLAKE2b-256 ead864cd9348fa6ad2e2c979573d7764fc3fc6fda4a12dfb11612f2c8df5c8a7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6f9d4867beea0c6e82c9356067290011507fb9fc3ca4bbec1972e72f77b8a151
MD5 f510454fc3380c6f2eb39d309a76d3bd
BLAKE2b-256 d947409f914a4459710a168c341ac9443fdcdacb3058a6ad34e79a037f7b62e3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea7f5832647c72dfe3e56065619e34409445581c67037bd9bc326bd2b378360b
MD5 2cefde8b0b54d1075b4764ca118bebd7
BLAKE2b-256 24665d4bd0b3c18a54c7e374815975ed9c515f8206d2c40d56e4a09e6068fb36

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 adbeb0dc2fba49f2ccf1e9c2028dc03bb898ab34765b7a39550b4ca78708c94a
MD5 0bf63b7bfd1be27aaeddedf0a2355808
BLAKE2b-256 7348b39f373b5944a0478de721c88c5457425a9443fd38708d90bad5f9c31013

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5f2441a4087c5a2a0ce89ab3fda769e3cae6304659d96d49f37e9abfcb32fc87
MD5 72f22a3cdd4130a5745305d590e67772
BLAKE2b-256 745c1bc6198f70963c904501224cacab521326b7572d612319831ae5b9d2f101

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 785.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ed59dfa72b4ec7b92696bc87383ade2f91e224e455997740426129c558adc4e7
MD5 22bc9e3cf7bc24a06f614419d92258ab
BLAKE2b-256 c35f8d7e9c03d27385f9025813ebfa7d9e5594375893c6d6485ac26e2926af85

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 716.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4b6a1adb5cfb2773424f0c99884ded0c39ac1dc733ffcc471572951b9aeb7a0e
MD5 26876bbc5bbbbc0aefc59cbe92c55989
BLAKE2b-256 ca40e0f0cade8b500c388fd1689a3ab2f0952a0821c9bf89d871a6e07e13cd22

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a23495fdaa8ea62fa1d238572acc3fba86ce41770bf608251abf687e9f6bcf20
MD5 480dce8121d2106e1444e1dfa3ffaaac
BLAKE2b-256 324ba463b04d24cc2649e1005cad7c583f7b9db5161392a973b0c99bfaf5b610

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 afe9ec9546ebaa1cd7e682132aef4edc05953e46436ad3b24387eec83b5e4989
MD5 faf5e0e198083827430034a804d28377
BLAKE2b-256 05c022a2114a713a39b19e63b63cc8ace632cffefa2068df1c8d5a33205b6b2a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0ce7a366cfc02e95b0fef866edcf2b907e8ffdce641dca2890c5f49775f2504
MD5 eb9eacc7046eef813e4e44314958da0e
BLAKE2b-256 edc2287ba25d6e5fe9d2ba4a0ecac554f202253575c8e6a6df6bafa517d2e8d0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17cce7f2c8e24a48d6b5809e2e8c33d8551b53d58d36373b02aadebead03d1b6
MD5 66d86237246dbeee1e13f26135ed0727
BLAKE2b-256 20d3c665affa91882a4ff0cc31b6471f643bf5ab2a52c32717324f96281b77ed

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 842.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 149bfc8b0d341d9d1d22be81e739dbd70fd9913eb668fef5fac84f143dba7751
MD5 d732c9687a40e7e65dce911f80d790c4
BLAKE2b-256 6c26a04afbd09184aed21d468b575c834d00c7733fc927274f9be58caaab7240

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.11-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 745.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.11-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 47f6db8a0a6e7ae82a1c179539b8f923b31a69b3c3f8030143d653d449e6666b
MD5 b19be086c5254d826ce2aefc47133b6f
BLAKE2b-256 5c849573377754f9a73bd1807941390f56ba5d60d79c4e91a76b5c8121a7e778

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8189e4f99645019d0433f13a2cc184ece327bbe68e3f2542caf400757210a65d
MD5 b0e95fa26fa16fca615f24d61939891d
BLAKE2b-256 5a372463d86fd52b19b72e0a57f3ccb3f923626521b39b8d92315f559776ea13

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ea01f365eaad3c66ae0a0545ac300b0c29c4a42afae84058e5b12da3532501fd
MD5 a353815b29e87c4b7e4542e8c49c8bfb
BLAKE2b-256 0ae46da58a1b45b090e590b7ed89c611bf296880e9078de0115c39a1aaa1f4f6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfd35d8ae99e208fc1974a389a4372e98920a4efd9b281c5a6c0ed0d24f068d4
MD5 34c42082305315d247e941173b3db8f5
BLAKE2b-256 a7b18a079500b05fa43995f81b3c5ba5e7db96857c35fece6d7fa69d503452d7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.11-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.11-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2708b6f178dd8599679aa9c782bccf4d5a5d473493419d99df71de9e644888f0
MD5 e940a4882b4f4535f3f2e93f29ccebe3
BLAKE2b-256 10d7246615ac3a6cbb3c78af56f6fd43241b8fe38f557977796880cf2a4911cb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page