Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY", "input_dim":[3, 224, 224]})

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For best results, you might have to tune the config a bit.

Results

The generate function returns a pandas dataframe, containing prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations, or log directly to your weights and biases dashboard.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch. (Defaults to pytorch if unspecified.) Tensorflow is still faily experimental and will likely require a fair amount of config tuning - sorry! We're working on it.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
    "input_dim":[3, 224, 224]
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Multiple Prototype Generation

To generate multiple prototypes for the same target class, simply repeat the index of the target class, e.g.

target_classes = [0, 0, 0]

will generate three prototypes for the 0th class.

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Typically, you'll only change a few of these – though feel free to experiment! The key ones are as follows:

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000

Here are all of the config options currently available:

config = {
            "use_alpha": False,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.002,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 1000,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "wandb_api_key": None,
            "wandb_entity": None,
        }
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • seed (int): Random seed for initialisation.

    • Default: 0
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • transform (str): If your model is trained on inputs with non-location-independent features – for example, brain scans, setting this to None will probably result in more sensible prototypes. VERY experimental. You can also experiment with the following options: ['s', 'm', 'l', 'xl'].

    • Default: xl
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. 0n a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.12-cp312-cp312-win_arm64.whl (665.0 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.12-cp312-cp312-win_amd64.whl (799.0 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.12-cp312-cp312-win32.whl (720.6 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.12-cp312-cp312-musllinux_1_1_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp312-cp312-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.12-cp312-cp312-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.12-cp311-cp311-win_arm64.whl (679.9 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.12-cp311-cp311-win_amd64.whl (808.9 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.12-cp311-cp311-win32.whl (734.9 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.12-cp311-cp311-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.12-cp311-cp311-macosx_10_9_universal2.whl (1.9 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.12-cp310-cp310-win_arm64.whl (675.0 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.12-cp310-cp310-win_amd64.whl (803.7 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.12-cp310-cp310-win32.whl (735.1 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.12-cp310-cp310-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp310-cp310-musllinux_1_1_i686.whl (4.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.12-cp310-cp310-macosx_10_9_universal2.whl (1.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.12-cp39-cp39-win_arm64.whl (676.4 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.12-cp39-cp39-win_amd64.whl (805.1 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.12-cp39-cp39-win32.whl (737.0 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.12-cp39-cp39-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp39-cp39-musllinux_1_1_i686.whl (4.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.12-cp39-cp39-macosx_10_9_universal2.whl (1.9 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.12-cp38-cp38-win_amd64.whl (819.2 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.12-cp38-cp38-win32.whl (746.2 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.12-cp38-cp38-musllinux_1_1_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp38-cp38-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.12-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.12-cp37-cp37m-win_amd64.whl (792.5 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.12-cp37-cp37m-win32.whl (722.7 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp37-cp37m-musllinux_1_1_i686.whl (4.2 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.12-cp36-cp36m-win_amd64.whl (849.4 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.12-cp36-cp36m-win32.whl (751.9 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.12-cp36-cp36m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.12-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

File details

Details for the file leap_ie-0.0.12-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 665.0 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 1925731a8d0253a16f1d9df7d0f369aa339ca92faac2a5e5dcb420ed0fc08b61
MD5 e675342206f2eb925e99c9a0afdd88cd
BLAKE2b-256 9f1e74ff215203b4d04336509701aed051e1f121eb3f166a6ae3a7cbc3d48145

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 799.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 281ba610a83048c2aee645f2539c8c79b617ed6cef9880a01a46a014e6dd4b03
MD5 35bc66f91c661e457f057a06bf9333e5
BLAKE2b-256 1a83dfed6fb5a09c0f91907e32a7f88fb9a140a6ee196f231fb2a0e48d489eb7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp312-cp312-win32.whl
  • Upload date:
  • Size: 720.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b738451a45a5a1d73711a3412d66773070db2e560108c36f7a7c6e36b5f3a543
MD5 325dd2d3a1c4881f2b89940423bc3850
BLAKE2b-256 c230f47cce0a2f51b83ff73dc324d318c4625e00f87da2b4fea4ebfcf4bef6a9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6749d91e68097b56fcf52bc306a0b76588ed61a3c64be5ada717909c5f0b8f81
MD5 adfbca894edb274a797319146a44a179
BLAKE2b-256 cad422b410b34f38450bdb12a1130bf2c11782caf861817ba5bd6ebfe282963c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f6c859189ce56f96d9163f1fb981cafd4d006e477eefa72381affd44ef8850f0
MD5 d913e334e7b357fe9a1b307cc54ea803
BLAKE2b-256 ec235130b2953ef447e14fc78f0a164a11228301d26b1c6678f5d5536d52a84f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a53ecc1fb450cf5f345f04713fdaf72a3b8db0bd14d2fc8b593287e6efa466d
MD5 2bf15d857e9403fd67caf36df31e2faf
BLAKE2b-256 b30e1cf37d9b470eba1989110c50b105124584961ae8b0e61a062437527e2916

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7f0bf994200c30a3534cd77288211d077db7bce6cc8a464c0963aecd6a91671c
MD5 e6b149066257380a5ddc06225577be99
BLAKE2b-256 1a0d7fdaf07f2d6a3c850c003d8e9a48804679275cee9d406008bbe3e5fb8ba7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bf67973f4275fb85d6be0c7d7ef43796c90b80b341f1f0ae280e8d7ed98b20eb
MD5 7cde787ac1da859228d0a0c76713995f
BLAKE2b-256 042cea9988d990ad7e01c7ec72b6f12bf2180d27eb7b22b3e95a65e05183b8fa

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 679.9 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 11e3a5d96f8260a27cfbc65ae2d4c9cec5b835b9de1c08842a78cd4b6c7f6e1b
MD5 e97a67ecea17e1b68cacffc948aaa744
BLAKE2b-256 8c8c240f131ecfbcdf6fd853095b8a90b6f0d0372f7db538a345833adf458d67

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 808.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d0e5a4769f41300b6871d75fd680ad1ca16bef28bcd3dfcaa0325818678a674d
MD5 e91db288d5b8e08f66601a218264c4a7
BLAKE2b-256 d74cbfcb5e8d4b93e2d6b2cde03e833923608330837cf4a362a0839f008d7357

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp311-cp311-win32.whl
  • Upload date:
  • Size: 734.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b2b7183d8d79ef83d2a12c394a045cb7a3f8c680d8fe2ba8ff6127260362aab5
MD5 7c77f87dd07b17ea4dfeca0d791670d7
BLAKE2b-256 b56e85a9d9323d490f073ffef5cd9c23919b1d11f33ca975a948cce498df3eba

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0fd95f6092325cda57a252fa1a5746f16d2d201d11951b47fd4bc89b4d31636e
MD5 9c947410df4991fa5c774b4bc42bba90
BLAKE2b-256 9db97dfdecfe55f898aef53fc341ebe9bac3b4dacf6908b8c0f5bae0406e76ee

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c3adef9f4810556e2a902ab88b9695fe014855dc64cf6234ec7e30f7e5279a19
MD5 d750679ab6cb43780bee22844e918c3f
BLAKE2b-256 ffe64bda6f7790cbbc9af42e2d5db44c54ae73077150d2ab3c059cf1aa0b49d4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 545d026f090a83fc0df3e3b4795d6351f08a4081ba804eacd112f659c2d33468
MD5 ca3f32f85cebaeccadadb003b84c1420
BLAKE2b-256 f6eff3f198c4ca2893e6367222122c3abf70a28e2d84d9702e6e05e426a10122

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6852e7c4b04387404dd54aa3f3a25ffd440f5fd1e7c5fc628f3b4558f09b5602
MD5 a0643b2dec09fa168d3915e4389d7b92
BLAKE2b-256 3d0deade2e4c5ec8cc7159643fecd829068839a21d073d71d07dde2c8920d3f8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b2cfd2c15d46cf329cba184b7f372ee77b3051990845f7a5de6bad3c48134c6d
MD5 c7ad5fbcc2291e56c5e1058adea3224f
BLAKE2b-256 ab11bec4b447c17758978dfb53f9787d99633e6e7acdd12903f025e71e9026ab

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 675.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 89b52667084389ca374e6e5f1abb80da4e19abb619a1335ec755c4d1b6f52c96
MD5 afed8533acf9810f77875ed0aaa200ba
BLAKE2b-256 fefc9969d1523dcec528a548109fa668d90c420ea3533e3bdb541feeb483e5ac

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 803.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b6d67ed0f7bd1fd9a92a6cc2155662c9dd76e8414ce54c84ae433094a535080
MD5 920e4e11d4636dfa8dca5f9b4af8c0e1
BLAKE2b-256 a9ad587386681e25a9fe15b20e51945c5bda8eb4c6d8ce0c62b0f5d3f7ad97fb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp310-cp310-win32.whl
  • Upload date:
  • Size: 735.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9b7cecb6846ddfa114e632addd7da6298bcba39c53d930c33cee8f5d59c2f6f5
MD5 70a004744ecf4cfff09142ff726bc2be
BLAKE2b-256 e81ae2ce405a5d85710c5d47c63a946c22e19ce61e3507a8b9f024dab2380ff3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c65d23f9edfc34e2a0db8acf950e521e4b746d456430cf1a1cb799ce3e847019
MD5 594feb15b34abeb3fd55cc14c94c7961
BLAKE2b-256 043870e3323dff036e847793ecfe36e944cc4b939683e55c3839f165befbf1c7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8dc616f990efc541d28ef1898adb22abfee096776c97f630acbf7500114ce992
MD5 46cbfa5e6ee2d5e80b1f9714e84f9c9e
BLAKE2b-256 7caa1f3a312a7ad06e4e9f8fac403ba05f6b9a1f52d3d4173bbc0d5746ce07a9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8b348c1e7e42f87f88ae6ee7a56ffc84aec6695ed15cdfba0b64476f501f7b4
MD5 ba6689b0d29c94d3452dcf482f9116b3
BLAKE2b-256 183f250b6b461943640da54f82a8c1b175136e4f0830b6e7d25472616ebe2ab2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e914860242fee1120a0abef2067e697cb9aeef7fc98db34e142a534dc83817b3
MD5 b96aa69aa042d5395932e824d9e7b30b
BLAKE2b-256 d2c3082172aa91cc024b7583521c96e3539676f61256b83a400584fa4deff652

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b10399341147299a109125c79ec70f4886c8fb7d82e217465bf352f6d6ca8dc3
MD5 55feb6133ac83fb97d698620d0f4ae92
BLAKE2b-256 e9a5674ff432666e7d2fb258b5b0fb135a951737b7ef7d5ff222ae850cf57249

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 676.4 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 8e6def96a5bd0646fb1b08aba09ad59df916d4785887ea4ae4b6d538a7762f0e
MD5 3c1aa9ba8f194919a35a94f4fe739ac2
BLAKE2b-256 81344b43c82685619c9751809e4437a507edbc5b0d5144dfcc8c7b654ac6b149

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 805.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df6893eaab34847a954f32a1366a2cfee997cb7440c07c679d8854d7fcaae6e0
MD5 7b681cfc38e8b87c59068ef48e6c07d6
BLAKE2b-256 f04597495368e9c4c37bb7aaa1d7eee42f3aa73651af5efbb0dfa8e19900a641

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp39-cp39-win32.whl
  • Upload date:
  • Size: 737.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 076be49e1d90e35bdab71673780fa7fdbe5203147f97c79e549290102c1226e7
MD5 e18c408741c25e7bd68f5ad4e28153cb
BLAKE2b-256 f43227d35ad239c6a685b9ac2d288d37081d1778c550dbc7cf9080ff01471102

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d611661a7c6c655390cbad1a8090ba6f6ed8bab27c88f6254118e1dc98182feb
MD5 8c34cd82ea35c5ae98955751fc5c14ce
BLAKE2b-256 a66f55bfa26c8a87af58ad2014412b25721e047e8ad5f2fc5627fc252abf7f34

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b9685f678a6e4c73a7d847824024ad6967783cf912ffa7b55688f8e55b59b2fe
MD5 a10e84c3f19d35ce06b4ee2f76bbdee0
BLAKE2b-256 39d08d3efe9411751daae2c2df91888b41acdbd5fe1c2d4723e6e6f7fe225689

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 286fdd2712934eebf9412f03161143323f5c209cd4a191c3079624876b906fc4
MD5 c2f05ec353565191a2e8ec4281ec23c8
BLAKE2b-256 c16c166e1115851577067973d9bf84f846279a1c7a465904a40e9c7d0d94bb39

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b387b090e36e277fe4e63ffba2d26bc82bbdfcf91426247e78f86ea99eea00ee
MD5 e4f741cceee9534def880e44f7195aee
BLAKE2b-256 ddf90f258130f387bb02478de048344d3ac3a11af29855bd17552d4ab5e4a746

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8d2ec339ad29ee36992037106cf425db1bab32122df753fbbac0539dc4ca5dc2
MD5 e0098d6235309690b09a170f56a5f80b
BLAKE2b-256 a510116bada9ace566006c5b63be3eab09ff29ff616baffb20963069ec8cb020

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 819.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4ef170b495ecba77b2fa1622913b10315450246ea716cb9b71970a8d2958b36c
MD5 c2b3e94705c9d53ba5efa4129e6c4076
BLAKE2b-256 b84abac04f9f126603e3f70a20d3a9d11635e3f00ea0671fc6d691e1c884f49c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp38-cp38-win32.whl
  • Upload date:
  • Size: 746.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d482bf6e9cea85e0da5f9d9512812587aebc11d267fd2c77431f967ae5deb5a2
MD5 83fdacb55ff157db9379cd685cd9fd12
BLAKE2b-256 9f7f356a1c8359e33ef2b918b86402eaec7522cec5c0c48ff0375ea4e9f31e08

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c2f870a43f6822c9682dd4c99f1158fdcd4f2b262be7f21f3081c0d548b28658
MD5 9d17a1440ea3e06e1a9e7d11ac96ec6a
BLAKE2b-256 ff4d2dfb1bffa8d88cb50f3316d2709db023a4dcaa6a090925c6cb07d2895bc8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 825861ae2f3cff4b1ade22d0ba6b3d584fe8ffdfbcb7c1280cffd18462d1add6
MD5 84cb5207cf45445f4b696be3c82ff903
BLAKE2b-256 1cf6d0ff75c12b0b7b67faf734e8635a00431b655ba657e0155ab40a96895be4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9168dbb983b52d607f08b6eec76e06aa32c0f401015e5141c9765866bd4ed61
MD5 7cb614fa2ce5f3490324b08e8ee0e617
BLAKE2b-256 aa2fe5af91868d99fb0968fc9c29c50af8c2f0788e6f21869bde09862679fc6f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3db7d726398fca7cefc7b3ebe0d2bd77264922be7a73808bf8fe6c0a348a48c9
MD5 03fcf39e33216b7901b18ae4a421c55d
BLAKE2b-256 bff3876630aff61684623334b68bd52b25e820a446d339508c9525583f54fc13

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e48967e13e66d100b20194de97957c01b2dae0cccb5e9b3ea222946a4ad886e9
MD5 ba54cb5a63d76a61c9ac9d23620cc714
BLAKE2b-256 1bb7ffefdcb17c4e8e1b24cb192f3577e4a2a839cc2957ebf63e40c6c7f91bf6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 792.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 623e54b3f746444b83f273b5f9f053e397086f5bb4664be82c0dda6835ed5385
MD5 02b5d80a52406b7148437f72692af3fa
BLAKE2b-256 e5b2e009650c712f217ab6314f4ac29bc5a20459614643b7dc6fa18c28e3b2ae

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 722.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 21bc8a508ae146f592ad33ea0fda5b615db600a1196ef3fc0449edf8a3a5a9b8
MD5 4facd8793faa4bb71652cb94b99c853c
BLAKE2b-256 63209a54e4e451b33d8cba271d9dbb06d80f0ec7747a7bcc00973aee099cf333

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4dcbbb515704929c19ebd9657913ee2aafcefad6395abd04b94aab389062e939
MD5 9c30a65ca69d65945489d08e57f646b7
BLAKE2b-256 c5204116d92729ab418468b9a61056e57a0bab205a5bb68ee6d365cf6d149f80

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bb4dfe850becd90a7361f32bbf312ff5fb4fdc62f391c869d04373f6a3e3382c
MD5 2520e18fd33aba149e027042c391f274
BLAKE2b-256 69bc2d987c17b0a8765f2dc9e720c1407bf8d9be5ea53760666b4ede5dc45f9f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 770a222a867406d6bf021aa44df8529e1b9276f9a66c15594cc48ff9a02ebf8d
MD5 8c6c218573b4561911bf1cc8575a10dc
BLAKE2b-256 f978516c8545ea7dd7be2e8e5239a0d2ba2abeedd672e0adf4f0bb47975f0d97

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f3d6e6b08fbc08b8d4b6968bb3bd8fc777c1f353d2529cd0a4f1b1158d1f5cac
MD5 5ebaa344a1ce0b8fd2045cc6778bd6a7
BLAKE2b-256 00299e076583c8748a33849df408cf330456f78ce1ea51b8f00873771ba23dc0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 849.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 969216aba3189368c77193f99fbe462d59dabd0c99f8d09675c873b541cd36c8
MD5 46769e2f338f6f28e76027002a97cb2f
BLAKE2b-256 b168f7a134c1c73e98103085c5832e20c093839ab4ce77b657bb2e874d421e57

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.12-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 751.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.12-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4f9c3f6dae7491c5733278f7bbbccb0253e76c2ed9d84cb2b960e1c12a90c492
MD5 25ecf1455026d51a8bcd5e9f9d6ae730
BLAKE2b-256 10d70514a79f48bfd2df05897a57ea0efef1052eab0c277dfd290b5e9069eb0e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e621ab2a76517e96664eebac63d0664a2cbe8b1c0d9f39f0b5871effd6f29a39
MD5 e9d0a1df798aa8dbed197938f710797d
BLAKE2b-256 23431c094e1c6ef5d2e1632c3403890bb68205df3674940c5964ab7c1d92976a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bbb4dd433659096d09d3f1aa2605b51cbb058ba7fe9b460b70ac663aaa825431
MD5 95d984517185adec83e9ba4205c1d511
BLAKE2b-256 df7df16ecd58297299ba5558f915f7ce1caac817168b9eae9c5db7ad032b9d9c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 acac67a777478c1b7ffcc663a670937244fbe96cf46473172b3c93865fb7f421
MD5 fbb4a7fdd8ab8c9579ecd690b925041b
BLAKE2b-256 8b001a585eb602b6ef425a17a8b4d7799b13725d3b7b36c7451659aee7e1fcfd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.12-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.12-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a00701ef7a0a3813e5c9f10b5a2b56b285e8c8246a863d44399a22e8b5a3d4b5
MD5 9bb7098c8c66660f128c165f0c9ae6fd
BLAKE2b-256 2028479660f42c10f43a5f65d3f9a9d33d55fb8e78605d549b2d0351ad562a18

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page