Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY", "input_dim":[3, 224, 224]})

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For best results, you might have to tune the config a bit.

Results

The generate function returns a pandas dataframe, containing prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations, or log directly to your weights and biases dashboard.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch. (Defaults to pytorch if unspecified.) Tensorflow is still faily experimental and will likely require a fair amount of config tuning - sorry! We're working on it.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
    "input_dim":[3, 224, 224]
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Multiple Prototype Generation

To generate multiple prototypes for the same target class, simply repeat the index of the target class, e.g.

target_classes = [0, 0, 0]

will generate three prototypes for the 0th class.

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Typically, you'll only change a few of these – though feel free to experiment! The key ones are as follows:

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000

Here are all of the config options currently available:

config = {
            "use_alpha": False,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.002,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 1000,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "wandb_api_key": None,
            "wandb_entity": None,
        }
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • seed (int): Random seed for initialisation.

    • Default: 0
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • transform (str): If your model is trained on inputs with non-location-independent features – for example, brain scans, setting this to None will probably result in more sensible prototypes. VERY experimental. You can also experiment with the following options: ['s', 'm', 'l', 'xl'].

    • Default: xl
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. 0n a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.13-cp312-cp312-win_arm64.whl (665.2 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.13-cp312-cp312-win_amd64.whl (799.1 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.13-cp312-cp312-win32.whl (720.7 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.13-cp312-cp312-musllinux_1_1_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp312-cp312-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.13-cp312-cp312-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.13-cp311-cp311-win_arm64.whl (680.0 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.13-cp311-cp311-win_amd64.whl (809.1 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.13-cp311-cp311-win32.whl (735.0 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.13-cp311-cp311-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.13-cp311-cp311-macosx_10_9_universal2.whl (1.9 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.13-cp310-cp310-win_arm64.whl (675.2 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.13-cp310-cp310-win_amd64.whl (803.8 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.13-cp310-cp310-win32.whl (735.2 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.13-cp310-cp310-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp310-cp310-musllinux_1_1_i686.whl (4.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.13-cp310-cp310-macosx_10_9_universal2.whl (1.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.13-cp39-cp39-win_arm64.whl (676.5 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.13-cp39-cp39-win_amd64.whl (805.2 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.13-cp39-cp39-win32.whl (736.9 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.13-cp39-cp39-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp39-cp39-musllinux_1_1_i686.whl (4.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.13-cp39-cp39-macosx_10_9_universal2.whl (1.9 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.13-cp38-cp38-win_amd64.whl (819.4 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.13-cp38-cp38-win32.whl (746.5 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.13-cp38-cp38-musllinux_1_1_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp38-cp38-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.13-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.13-cp37-cp37m-win_amd64.whl (792.6 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.13-cp37-cp37m-win32.whl (722.8 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp37-cp37m-musllinux_1_1_i686.whl (4.2 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.13-cp36-cp36m-win_amd64.whl (849.4 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.13-cp36-cp36m-win32.whl (752.0 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.13-cp36-cp36m-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.13-cp36-cp36m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.13-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

File details

Details for the file leap_ie-0.0.13-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 665.2 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 8c71af04a886185a46c17e1a8f3d0e9ac11ac61270646f8bf5ab66f1c53670bd
MD5 e8d7841eb012dc28ea719f37a466f15d
BLAKE2b-256 e195af6a40b2d9b74d1ce362c215570674fb610c77c4b56a8a5093150d24eaec

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 799.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9cec520d00af7a72530c96ea0576e894a73a11bb913463b6caa3693a69e4ffec
MD5 109a664fd47394fee3ed6bad875590b6
BLAKE2b-256 383bd43cb0c0c88f7c3f2078611c4a811807c580f691ed09098d29b6d6383c16

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp312-cp312-win32.whl
  • Upload date:
  • Size: 720.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 698fe84431e739f1940d67636802e3d3e63207feb3f4b64270e4424d34c9dd0e
MD5 9f224e655a36b89bfc79fe44ab837738
BLAKE2b-256 ccc01484a33581ef6e6dddcd982e18446765def0a74dc1545f0b27f50aa41497

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ce0cb880c97ba0feb0c6845a3d4ccf2151022e7f2d71f9f279ba7714a14fa81
MD5 ae49adaaca111f8d9d1cfa580bb0c44a
BLAKE2b-256 99d08266cffa6575618a22f210fb394630e8c69b2bfd954d3627475a779cf28c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3ba307365e68d89258369680937dca5cbf76e359964f158d195269813e660c2a
MD5 a22b2cd83391f7a948b50bfc5b886c27
BLAKE2b-256 44b7d6a13e07cc86005a9052976bb09f074e5162b05e25c288d298bed994087a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2370d23b315f73489723f25757f3c8e6e6bb9ce681940e36f11ff732770ef1dd
MD5 bb16ef9f705c555d4ee2d43aa5594c86
BLAKE2b-256 306dbfce87745dae3e5e698257fc0e6f20ff4317e741df7b40acbdcf5319c3d4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6280fe1b772abd822e7c25df019fbddf71f89be0ed15ae4df135c31f27c10c33
MD5 ef809cc804effd67d96d16c5009fd311
BLAKE2b-256 0491f50736f8f50c1d6aeae557853550104820f4f4f3511844186bcdda00427e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2f7d4ab45c152f8a185d8c1ba129b9ea952da3ec87ce088f113f16bf5c8eba17
MD5 ebc49b1c08d577a12107d8388e4f36c0
BLAKE2b-256 a89f60eb1a16bf1aaae8e01637512081705abb0863e269234b7a413fdc80da91

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 680.0 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 2badcd96a46737def2e7b8f9e1c51e640f463bd2b9b7e180222ed58a6846ccc6
MD5 40b9ca66aff308fe1997b2c3e70dcdb5
BLAKE2b-256 9a884bf661184f0a37260df45b6af1a0e99d820f725729758ab4e69d12488bde

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 809.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 341aee435728ece37be836acfb0d8f648c725b1daae836784ab4c2ce239ce4f3
MD5 d9b89a6ba9f653ca1fb79194f1aed9c3
BLAKE2b-256 81e3661664a0b0ea9aa2d87340bea209bc9bcb7cc1326769999f4318f263e885

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp311-cp311-win32.whl
  • Upload date:
  • Size: 735.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 074c4f68854d9bb7bf25b92d52b8d009eb9afba3d0bd77a22a1446c9cb6edde8
MD5 e0857323634a27de54c779cab8899151
BLAKE2b-256 ec6b01135895c5d9680ad1ceee929e706e545de5bc7194ae97cca539dbb9c346

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4416d8dd1d7b09ca7f1c43103bc5c9199e097772665250caf70c303fae60eb20
MD5 cf63ed379ff15de9b4f3d8bfa42be4fc
BLAKE2b-256 e6a417fcc13aab3f5a928c0ef127ad603c4f048bef07f3fcf09074c707172aeb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 54bcbd1bdd3157541d5093098e88368f7b35501203bf27184f8d17e47d184d0f
MD5 70d3f4acf8c2991f1a5af2dc537ec9ff
BLAKE2b-256 fe59f8aec31ee4a577e295c0b828b1de3ce3c7eebe72ae59ed7afb4543b98606

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ede3bf525335e8a7cfe472fe6bcfd54e32be52db5a8dd3e83eea131a9bb14ebe
MD5 fd553a1a40dfd0008aa5ae30ccb8f1bc
BLAKE2b-256 359981cbb9c39038562e479624b136450cbcf9e069bd6c17b6e00b0b1d2e02d1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 50acbae204531389b1f6bf29f01dfe581d119dfcfdb9c8ce36c2a5f21a3ea000
MD5 68d63f291780cee2c9a6db2d509b87b9
BLAKE2b-256 5717e6e268a835043329af01eeb4f0bb96febb3d58724d1d8886047c5ab7fee8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1ac2f4518466b243238e44706818aaac20f48c012dc3ef83d586148651972515
MD5 a6478e8bb4f68268ff2c4def7b35dd72
BLAKE2b-256 b8dafda3aacd8f78f960abe78b05bfc9062aa94b08190b3ac3ab7fa3e5fce6f2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 675.2 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 9996ca7f9b98d4a5df09d40547b426eeb9ac55cecba60f1dfe166975de164627
MD5 0a17e94a8446936b75d1e96b1cc7c54f
BLAKE2b-256 ad83cbe129b0f83b177d64c52a3ddcb19a6b425cdde1fc9c0faef977b7d43e7c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 803.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4b5f3e8d3966f3619c2f2de6457332ab92470fab8ac97743da23bdbbf0bff5ee
MD5 e1400324b89ec3d83b1ad3403a2b3196
BLAKE2b-256 4901ee62e40db7ab49f6cd534ee052207250a032eb37be76537d00226a077f05

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp310-cp310-win32.whl
  • Upload date:
  • Size: 735.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4a74510e68f9624b9cca1c9d5f9d3537c297305c7387992b0342d8fb9f7e0def
MD5 2b1a740e70ac2ed6476037435b1ed59e
BLAKE2b-256 298196bb7e1c1b6a42c874e6126d1b51aeacd4a58f52a04f63775ed7a71d9259

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 682785ee45622f4423870b60b2ac935dba42adc0af7474407c8208db6a5231e0
MD5 b8f5a5aff406409eba1208bc9ff6743a
BLAKE2b-256 53f4a7ce085164f6b90bee046b123bb7a72e0ecc9ce80fd135a71d22feb36910

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5113ebdaf7a12ed6deaa9ac42e93a40a1df4e69280b35187d8a9ad3be54ed7df
MD5 9b80160943a6e7d4f4d070247a33c904
BLAKE2b-256 4330d9db206545759152582b512bf005d1f7bcc6956eef170d1602eed02592f5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 556d1fee546d00d6d2ad1c0da53da2cce0e93421ed4412331e412377557dbd6e
MD5 b63cce67da38def3c7410e4a1eb5155b
BLAKE2b-256 1776be3acd6cd7973dbc2723fea117f99b58313caa0f36867e7bf63c07d863f4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ac09aa61b25f73fa130645ac96d7a4cab43d84370f1f2a41fb223acf87cbab37
MD5 52530ad3af7c8ef231f6870271656e0e
BLAKE2b-256 d0715ed7edc385106a55af613b72959948e4faec27e4d69f3b888024b4a8c22c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 953aec49e1d2f805e5a3334a6e12219a46a89d8bfc66aee7a7fd5da27d87b66a
MD5 bac12013fe3c29ebe41819b28abb54c2
BLAKE2b-256 67137eddd9afca9c949b3308b2adb146018237624dd53d2164be080033937fd6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 676.5 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 c7725a36c6f6dccfa351b12380fdd1a45bbff3de63c765e5e09ffab25ebac4ca
MD5 9ec9cda0d8785bad539d6eb1d6ccc4ae
BLAKE2b-256 13c06e75d6d1129d331c03d6ddbd00d18260a04764a89b0e2b944b6df5f82fce

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 805.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 770d3e3c1fa629bd2cbe5e306c23d84b80c34faa6f3b756a1c6f996244992595
MD5 3e459ee3b2b399ceaf5c4b541866eab8
BLAKE2b-256 0a2eb6b9ce176c0ce45d36bc079defc739cc186443b59cea0b2a4d37376de608

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp39-cp39-win32.whl
  • Upload date:
  • Size: 736.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 07c2a053cf656583b2b22d8dff6ab9f45a81dcbc82e8b6b1c48defb90777a0d3
MD5 f694bf88e87c14ce825f772ba7d45ae4
BLAKE2b-256 4b602893fcd5ab9b52ac2f00045aa17ad2351fee0e17d1891f95b96861ff3988

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 245029735cdf4bc7efe4c3ee25ab192e4b7ad22355366c38ddf499338ade0e77
MD5 b82b9ec7c254fcb0f6ce9bd9aa582da4
BLAKE2b-256 4b3699a47848a1d8be8da00f952d71b44bfd70e543b78773eabe66306b296afd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 712cb62b637f371fbafcf5cbd057a32552be5ae0d5e5b19debafceadb8527f4c
MD5 c13eff972a1a0735d1f93bbb8b870cde
BLAKE2b-256 219185a1b4a5acce368c0c8c7ddc8a17420e51cfbf4fc0a97bc7923aa580d5cc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5128d1b9d20d82eb7305675fb2bafec05fe791d95b17c823b129de452fdfda98
MD5 c5fc21e3e21781fb1e24668359e09d17
BLAKE2b-256 428619c5d13bd4b49516f42f8339f32631efa0318cb2c00da7534da8ba6ab4f3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 827820a0e399a784a19e3ad2f11232ec048794dd37cfa0be4e8f6ee4edfce314
MD5 e6c81e5564b3a7d53530ee15a5300dbc
BLAKE2b-256 a4ad237cd385a714fbf153b596291d61049336fbdd5a6d586ba01260dc4ef123

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 51b5155db875e1367238cd405f8998769671b06bcb527f0f258113f933287e76
MD5 b6d37d3a43b21079a036ee04fc859a89
BLAKE2b-256 17e41154c6cc4ed4055ad5ddfbec59ea4f4967317f82fb9e9f0230a3f3f0fafe

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 819.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 664e0aced38b568b5f31d01efd9ed0b9633e331eef7403ed4e0abee0a57dcda5
MD5 1219d1340955109ae2294949229116f3
BLAKE2b-256 266a3eb6703abf8b970c0a574bec01bde1fb53e367127f6b211ae8788319e47d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp38-cp38-win32.whl
  • Upload date:
  • Size: 746.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a46ebbbffd1eeab1710e1e955beaa7ba002de2cc4dbf7001805364399e417480
MD5 fc2d7ddb6abeb2b25d6ce7044c604497
BLAKE2b-256 c4032a185d36a723f982cbe84708053118bc5c5763363737d684d197c390a9a4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 75498e9586fb93520f791148e9e1697b0d2027e25ab044dfe85fc1f4caf6ca34
MD5 5eba5bf098c5f5b9fe986c92851787de
BLAKE2b-256 f5b87b9453377418eee5ea800d6ab0e1d5bbf8740e05925ded9a760f70fca14c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 48de9c1627f8ff046abfb4be3de2f499dc6cd3ca419fd43c95ab9348c803cb2d
MD5 5364d59aba5d826d18d15ce3553b8b4c
BLAKE2b-256 1a9f10695f8708e28695fc2fc954a74ae6c5ba497916dbfaa260b5971a3c15a2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ec0e32772238f0507bfb948ecb666312b34a1a2bc981ad31f19887b929c7476
MD5 354e31119fa0411edbef27456765497a
BLAKE2b-256 fcdf4bebf161dc3f595f147e0074393395d9386e94a9db8c32bc267daa3eb82d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fc8fbe10c159431e80517b72c169fde474dd2300078e0ef7601e9f91e8621975
MD5 5686e2eaee50dd76b943da377492af11
BLAKE2b-256 741b41d2ad098f09141e61ff32bd22ed28ef0600494724d544aaa9d0e589fe34

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7c3db7be3771336933509cddce5016aaed6a0f2cadb3e82d07d9fe5c9354c4ee
MD5 db718ed81569b75c59842e6e72741a9a
BLAKE2b-256 7601f5b7fbfce3a6be16d25aa2413c16dcadf74dff972d743c5dfdaf62413273

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 792.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7892f4f9f82c63459bad3357f2c9b136a7fefabc7d0684c918377b3c3e0ac2cb
MD5 6a3c38e08b2e6d9cf4f1834175465eca
BLAKE2b-256 ea9ab746db7f88431cc411335e6adee0df4c5b7540ec9ecc09980b77ca36d348

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 722.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a8d84847f710fd5f90adb3137e2d4c60404e5899b7f9135eb7b5939b46640375
MD5 55cf010a4c1f6b6bbfe9f1a5db147829
BLAKE2b-256 71be818dc711907f82e54ffd55b2dd040b4d4363d846e06ca13450faa286cc90

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c5398b3c6999dd06ecb7e50f289cb10352f142b4218a45e99fee2c331f5fb3a7
MD5 ed61a273bde229aef7c9423d33ba4bad
BLAKE2b-256 9040f69dcb8dde94d8ca0ced96f3752791f4d4c4a0c7fcd0476451ddc51c346b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 051155baf4ce20b84ff2b3f5454f770ab113c978ab1d37987a6f82be23332d5f
MD5 e1159c0bfea837eed47c95573c16566a
BLAKE2b-256 d956e0df6381a3cc351a2a426af2bb8aa38c2d40ba65d0b266ced99626ce67ed

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71bcea00164c5f58060a3768af1032b505d978d011a4110221da9e3a3f05f4f7
MD5 c646a0e2c318e4d19adfc0ad0807ae8e
BLAKE2b-256 a1b83ea14e80a95aa4ce90e0ba9fce9c5aae28fc958d6ff92b29de60ff2de9e6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4dfc5fce4afb436a35aa7bbd431bd3622c4690b1f23b8fe1e0419274a0f31ce9
MD5 e9cbcd46defa7665b4343fd3344e60c1
BLAKE2b-256 e68318ca3e2b8d6959e323f2b8dc4fbb92e4710674201af29580d63a5a7b6295

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 849.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a0125392d75a85e751aff19d84723dcd13d71d9392e0192329e672fa4170617f
MD5 b3a53ca9da886683ee9ba9845f84e0e7
BLAKE2b-256 d46e65d0c5262182224752ffaf573a5aa9da2eb6aeb7070209e4224580f4c8d0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.13-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 752.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.13-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0f7e0d336339628236943b9e9fd8a0d299dcc066ccfcd66407be41024696defd
MD5 10ebe84b27a646f0f7ef4530761def02
BLAKE2b-256 b221d9a764207900558c4d33dd7af84b38c69aedcb0e790df651c9675b6b515a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e519375653434890322e3cb48624ecdb014354c7b2765c28750690205e86efa7
MD5 df297a937b36e11dfd14c19cc14de712
BLAKE2b-256 fd94e394225d7f3d3d571b3f4a1029e8d2b28866fc92c5e6d6bc77cb052d4d07

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5ef9d4cf456ba54debc44bf6b328543467bd6ae2a65390aa6a8bf30b6395c5f9
MD5 b0100a11e6a791c0797d5bb1e8b92e6c
BLAKE2b-256 d5748f2453a18a3924fa9ba45234c816d92e2614bb9392ee7c452acf8df79b42

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d118a429c0e5d5bc8b8a8380af7069b18fd1049ea304c2959660b92465c5497a
MD5 071a52f34e771fbb4e54bcdfd6ca04bc
BLAKE2b-256 83a81855c2e94b742b1a82a878ac97aff255bc9440a6fb8038ba5587a8f343b6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.13-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.13-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fc94233f7a44efe4db7a52918468ee852f5e03b614746017776cc100d3bfe006
MD5 d130e9700e901541da2bb54df1f1d2ef
BLAKE2b-256 f51e5c80937f174cac4083179e9aa3095f176b5fb19589cac897816ef052d25b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page