Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie import engine
from leap_ie.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 2.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 2.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.16-cp312-cp312-win_arm64.whl (692.3 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.16-cp312-cp312-win_amd64.whl (833.4 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.16-cp312-cp312-win32.whl (750.7 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.16-cp312-cp312-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.16-cp312-cp312-musllinux_1_1_i686.whl (5.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.16-cp312-cp312-macosx_11_0_arm64.whl (924.4 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.16-cp312-cp312-macosx_10_9_x86_64.whl (960.3 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.16-cp311-cp311-win_arm64.whl (705.7 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.16-cp311-cp311-win_amd64.whl (842.8 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.16-cp311-cp311-win32.whl (764.3 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.16-cp311-cp311-musllinux_1_1_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.16-cp311-cp311-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.16-cp311-cp311-macosx_11_0_arm64.whl (939.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.16-cp311-cp311-macosx_10_9_x86_64.whl (984.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.16-cp310-cp310-win_arm64.whl (700.4 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.16-cp310-cp310-win_amd64.whl (838.0 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.16-cp310-cp310-win32.whl (765.3 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.16-cp310-cp310-musllinux_1_1_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.16-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.16-cp310-cp310-macosx_11_0_arm64.whl (935.5 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.16-cp310-cp310-macosx_10_9_x86_64.whl (979.7 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.16-cp39-cp39-win_arm64.whl (701.8 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.16-cp39-cp39-win_amd64.whl (839.4 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.16-cp39-cp39-win32.whl (766.8 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.16-cp39-cp39-musllinux_1_1_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.16-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.16-cp39-cp39-macosx_11_0_arm64.whl (937.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.16-cp39-cp39-macosx_10_9_x86_64.whl (981.9 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.16-cp38-cp38-win_amd64.whl (854.2 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.16-cp38-cp38-win32.whl (776.8 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.16-cp38-cp38-musllinux_1_1_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.16-cp38-cp38-musllinux_1_1_i686.whl (5.3 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.16-cp38-cp38-macosx_11_0_arm64.whl (930.3 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.16-cp38-cp38-macosx_10_9_x86_64.whl (972.5 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.16-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 692.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 cb229e146181b163964a9df2ca80b37864dd43927f0218e25994da8e2ab57f2a
MD5 3e680b46279a4001a4532b2d1fd52422
BLAKE2b-256 986a24169ca03dd0ba4b3f3ecf0a029ea4c0bb52dc14ece653e37c3e43ce3c1b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 833.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fec47ef077c43643e98d444fd8efdf4597d6e26480c490dd799e3478db5ac0ec
MD5 1dc0788ad015f2b0ba3fb47104419af3
BLAKE2b-256 f06689bb5da7de15b3f4987aa7d731f977c50ff412e2063b09aca09e2edaadf6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp312-cp312-win32.whl
  • Upload date:
  • Size: 750.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 abc39c1ff2bde9848404350e9c08eeea19d307ecf8d32e4dc5b178a53a8f8ad7
MD5 2fce08123849f7bb45af5aab5cf39230
BLAKE2b-256 f514973d047808b39ef7a603c46a895dccc71f1e45f9137144938c0451610d6d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a41a000404b72e54760d00c9912f4cb6b81ce08cc7e9cc98563c23f35264f0c1
MD5 5cce50fa5c917c4d4e79c0a87c341c63
BLAKE2b-256 60e36665b6630108aac51c3f426e4ccdd26cf324718adf9f4b8d3c60b934e52e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d4d9925c0fb9a99f693c1dcb4b8c7720283680e9ea3adf6bf8bfe8756f38b488
MD5 34c9cc8037a7df2699fdef18aad23b0c
BLAKE2b-256 9969fb30746a8c5203e3ecfa84ba0d18a15170794f3afef8a4313b72a30a9c8b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5864188395b3810b48114391c35d76df1314f56a4062818212e333fa33321e0b
MD5 65a66e3d95c0c49bac6814849395c6c5
BLAKE2b-256 f343d1a271cffd4c755977fc0d783a8d0854d9097dbe4313178a3cf1385df250

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dd8b55f1387070600350479272add7b84c0b3d856a3f8fec3b1ae9f23523a333
MD5 260997c64bd756ea6f798261097ed072
BLAKE2b-256 c155f5be8ef32589251c17b51fb1569a9201c835004b47c53e5c604cdcd5434f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2199b3647bf609ea44390bb5bf08d110e678904d93306cc219fa12146522506
MD5 d70e4598aeb7c5770f15dd9e65712a77
BLAKE2b-256 fa8b85243b8302a9604778f5a97eda29218df9654c3b7a3af194c676402eb73f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc3b814ebc3a78463a71f4f7dde3707c40328dbad12780fa9b9f51b1a62de36a
MD5 6aa3e3f23ce0ab03c9c94c0607d21d21
BLAKE2b-256 af9ff448d2854b52fb20bf63461bd07f0895f542047f8d4e2b2dd5552ee48f57

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 705.7 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 3c1a4c40757d0b69e0b4ba5b667a9aacb4c240b7befd0a9355fcf4a17f4dc1dd
MD5 3a6ca3dfeba4fff9b5f602d6c01aba36
BLAKE2b-256 26edc578a9252d45550f5a64e46889967e0997b47a440894471da9afe386f5a9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 842.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9c4e10b6a2c5e54f79a910b6b16b9f4ce2065a088ec69fb1f7d243703fd3b542
MD5 55762fc54afcaa3e4f051a58ea07a2b3
BLAKE2b-256 7f2e63b28ce9ee9be6d8ae568cbac639e387094d59a898e342ea2d5c141123a4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp311-cp311-win32.whl
  • Upload date:
  • Size: 764.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 56aef16588e655c7b61af71271d814c0f4dd6c9ff810355cdd449447e03805cd
MD5 393b16fce67334406728fee43bcea2e5
BLAKE2b-256 a45f3094d9373b806a5bc977f986da1069fc19733328bd4cf3aa57f918ff0367

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3caea0eebff8866444cc1910d3e25806b0cdbd93b43e374df6bb2605568994fc
MD5 dc21b16e1b6a571e55e7c347b4fe31f9
BLAKE2b-256 345ae05000d2f3d8e2c60f663cebe90768a1f5c35bb01d4a7e7f84e9d8386c33

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8b565694481e57ef82ea63359651bed1234b1d118d85af5ee1a853b0acfab0cf
MD5 91419401e8e9c7fca86c87bdd583b4bb
BLAKE2b-256 1fdc55cfdf3a0a3efa380680ee4e1b02c2258bce8a9c8bfd992ef33ea1455d56

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 749ff65ee6baec213f1e891360d2442358e1a10d64f235e6ea659c0c6da5a9b0
MD5 4ad7b9774886c5eb300a60023857c9b4
BLAKE2b-256 fc9f2fb46c62b5e3977c25c4d1dc45f032270fd96b021274bc8c46e5e533fff0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f1329d027bde0a4b2df95af00620ddffffd968223926025a06ccc050186518e0
MD5 cb186fdd9b15019267f91c654d519e41
BLAKE2b-256 401bd7fb19172c302b2fbff7f94ffd8bc8c3acfefb7bf042fc998d1c46e22277

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd1be4e727c6c2c4acb18980595a440b8b8bf3399559e4e9a396788c6595d081
MD5 504d1327f089794d1cc48dc7580aae76
BLAKE2b-256 1acf41fca8c44d8571e46dfe024d0834d8e209148382abf2c2aed18655c12f0e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 433015934a87c83d0e92a00a1378be9b73f121d7ee74c37ccd45c8ec09418567
MD5 c2670bcbaefa972914e3d447f1a39be8
BLAKE2b-256 a8af35d56d062145372cac91645e2e981db01e95f7ded47ce6886f71fb590ee7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 700.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 e54338cb16767bc7995c53ce6e2e6b25a6d34ca3754f95f6c66b550158b24696
MD5 864a92f15ea5987bea825a728735b57d
BLAKE2b-256 8a7e5a897b913f5d3d9a413010d6e3774946c1c32ecf600739b21e6c5600e0f2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 838.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 228a85f18c3417a304ec8e8265c7c5e15b4ed30dd801aacf0ec6a6d9e83db4ed
MD5 60126f2c87282011d70e132106ba03b2
BLAKE2b-256 0197cb12489fefdfcf086d8313e651f8133b62f40c55b5a919d242ccf3eaf725

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp310-cp310-win32.whl
  • Upload date:
  • Size: 765.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e454b322cfc6e2a40cc0544835ddcaefc9d7b9d22b70ead8c02c57d7efea3161
MD5 d034f2451a48f51927a2764ccc35d651
BLAKE2b-256 89c8518c065dcb45d79551d1accb6680b6fd7891aa63c8dbed229f5943064038

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 49138aa7214353157528847cc945b6c4f742897c62e8e9920ebd919744071b1e
MD5 e55228e0fc9181bf075522b088b987ad
BLAKE2b-256 1085b12e685a965df56de0b177901a64924ccc21bec639ea744f36a1fdc89a9a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0280f18bbb0a0910137e80058631788666468266c4db0e18267aaa07d37a8fa7
MD5 4564837038ceacf193bb542cef66cacf
BLAKE2b-256 bc66dbc75ac6df67da587b442efbb94c0b0a4c61a883f2fab30a66ec354bb6d0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6490195005778245c5576598e4aa81f0cd4a0b716e7bce4e3d5a4cdd45dedcf
MD5 936cc08b6c7ab7ae673e68457e67e211
BLAKE2b-256 06e1023fab2e8ac843652cbeb01ce28d88caaafdd8c49bddab24509da0186708

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e74c667404cead4d4cafd51a845736603d29f13b647f181e80b7be5cd347efa
MD5 6dee332efde32055f223341640bd5e51
BLAKE2b-256 467ae58cba5a66fc158dcae038b6689e61a863c6c4dffe95149aa34dd3478010

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b73c9ecd6dd597667058696eb534c11c4b757f722e1c3bb2cc16fdd6cb2fd1b1
MD5 2ae51a71409390845a01d0c3015b781c
BLAKE2b-256 6bbe3f38ae5908593fdd29fce528f5635f3204fb65b80527ffd805b5566922ed

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7e5941d0a6aedf42687c13fafebd755d944c4df785297e5a04b75da731a7061
MD5 ad748c819e273de9d19278cd4bd9ac68
BLAKE2b-256 d63f096e08fd2a067d2297a1c22b0ef8acbdae6e089952a4889b325dfdaf8ab2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 701.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 a3d12986d1fbb5c3da9cba3b427c535376e46a73ca23f9859de15ec2c9598c5c
MD5 a1c4a5159b07d1a373085cf8f079eab9
BLAKE2b-256 7fd44444fb78378b16ce637b350a92ea1bafd4248322885bf67892122ba934e6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 839.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e64b5ef57d80120fb6fccfafcdb7e59648c129747eced20b3e823206bf114b53
MD5 ac464b84804500702e089ddbaacab3c2
BLAKE2b-256 6547f56af6a670a36411dfd94981d8bd1e94fde30f0bb8466e05cc988f929cfe

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp39-cp39-win32.whl
  • Upload date:
  • Size: 766.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fe7cb5702a8c25cda7f299890255b71cbd57216cc8f2d055528ad1c201943e79
MD5 174e0aa8f170f7e906aae09639062c66
BLAKE2b-256 4737b2a702594a64cad5fc2d8ac5e08d47302ce09f8c06df5b1fbce001ec4896

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6340884563317339764fd69a7b09d697f355faa85ac2b7d6534d94dece46448e
MD5 734b3d8e4b7694741505378ad3faa26f
BLAKE2b-256 0a0a19b08b1d910006191a137579db88b1f7a6c25e2b9b3e46e0724c9cf3b683

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3ab750a4afbda34ad3a97ad8bcc8c1d3b7a5b69781808520b33d2f73329e3fa9
MD5 46395e3d1b97f8eb45100ad5092011a3
BLAKE2b-256 873a44bf522016485b8ab10843cb91d1144648081a73bdff2685ba8c5f23cc07

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0521fa29d15c5b6cba8ffbbbb48cdc9ec8e2e4afd8d51920786eeaed2658fe15
MD5 0da28bdb871824371f5688108d3b2e12
BLAKE2b-256 317ac8332f558de34b2770d7fea4579989d9cf76519c1041ccfd4b4377545025

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 38ae750f12fe14a5ba7d8f54fc35fe288b9fd6d77232ee1f778baf871ae9871b
MD5 809117a1d4a183a2b47dcc41bc40095f
BLAKE2b-256 886848c3ef4071fe41e00044ea39c13db0460076687cc9cb2d122d12e3eb0359

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea24e8716a7e7556333322af491ce3713e654e3e358d42d18521079c1ba18a7f
MD5 139e99e91e46f15a306c4795be6b67b2
BLAKE2b-256 284039dfd3f34d9d76d0d88d450e8dbf203c2ab668f7b7bea7a7f02a5dd4df3b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7af5046fb4f339b700bced4419e62400e9e7dc0643c6c001431b6377ee6cf49e
MD5 996e35e8750c73785aac076fdf6bc242
BLAKE2b-256 4facbf362d769e4c6b2dc8fd104da55754b94827e7c40d520d60afb09a7d9dd6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 854.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0deef60ab4730019f93ef5bdca8e681ffc341cac08923d37410f16fd4ca9c43d
MD5 7a26cc841e01d00a5a48aebf09f4ddb9
BLAKE2b-256 a42bddffe1a9543c442b75fbdee423966df385e827eecc30197088206bd61f6e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.16-cp38-cp38-win32.whl
  • Upload date:
  • Size: 776.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6f0de6b96eb1edb8b860a894b6d36719681f6dd79de72a468fb9d0c35b3ac549
MD5 57d56897f3b45f9da11f19a351274df2
BLAKE2b-256 f3f4ba608923ec3196ed77cdaea60f61d1f8e55e9ef9d1bb5cfd1e7a9fabc5f6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 25c9bee0bf0546b5926aaa7a05f437702a050dd2a926e9ebb1ebf7d0dab0b618
MD5 db1ced65c054996fc68c063cda7d4013
BLAKE2b-256 36631a36cb4e9979adc00604c0fed99af57eec73c28d69c1cc927cc6dabf9061

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 88681b76ade3e31400a6179dd7c2657ad6fb7c393a45efacd9ea203997a49989
MD5 ccf59794ea12aaf815db249377170e49
BLAKE2b-256 7e2e8d4e49c573546030a991d999be27e74d3b2cdafce37bd34908e09582b661

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9820fb19e383a264052219e741ae2cbd05162f51f32632221cece49c6a5b29b5
MD5 cfbf7f4e0e66c492741f767d6dceb7fc
BLAKE2b-256 27935d26bd46f6b01318883096ba3ff50f21899e34a6a385e42bf500244da276

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f9e35f3ac2a6af17e39c7d5c550733a7377d814f77c10db85eef5b4ca540bd31
MD5 4ce8563ca071f89c49ec4a4cfffedfbd
BLAKE2b-256 371ec033f97ab5a3b117e567c87d6d102f3f2cf26edeb45de1e2d8ffa23f7b2a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8de05f30a5d99869c25fd6c0e4593741c55baddf664e449b78f7fc9940ace66e
MD5 c58522baa8a41ac5ad8bf05a66212a59
BLAKE2b-256 109f7aa7a97d25f7056912b05b6e7b46ef4c3f4fa68e8e9fdee4425a257db166

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a9e5c3fc3df8a86133580734af31db51299f70714f81c91757aed4d07944bff
MD5 7e4dda266e24bb596a9978008dab8cd1
BLAKE2b-256 d44a4df2ba5b720fd844b7dcb970d62ddb1371188adfcd29a61c183b659e527c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page