Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie.vision import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 2.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 2.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.17-cp312-cp312-win_arm64.whl (703.8 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.17-cp312-cp312-win_amd64.whl (846.2 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.17-cp312-cp312-win32.whl (760.6 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.17-cp312-cp312-musllinux_1_1_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.17-cp312-cp312-musllinux_1_1_i686.whl (5.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.17-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.17-cp312-cp312-macosx_11_0_arm64.whl (943.4 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.17-cp312-cp312-macosx_10_9_x86_64.whl (982.3 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.17-cp311-cp311-win_arm64.whl (717.7 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.17-cp311-cp311-win_amd64.whl (856.3 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.17-cp311-cp311-win32.whl (776.1 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.17-cp311-cp311-musllinux_1_1_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.17-cp311-cp311-musllinux_1_1_i686.whl (5.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.17-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.17-cp311-cp311-macosx_11_0_arm64.whl (961.0 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.17-cp311-cp311-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.17-cp310-cp310-win_arm64.whl (712.1 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.17-cp310-cp310-win_amd64.whl (851.3 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.17-cp310-cp310-win32.whl (777.2 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.17-cp310-cp310-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.17-cp310-cp310-musllinux_1_1_i686.whl (5.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.17-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.17-cp310-cp310-macosx_11_0_arm64.whl (958.5 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.17-cp310-cp310-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.17-cp39-cp39-win_arm64.whl (713.4 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.17-cp39-cp39-win_amd64.whl (852.7 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.17-cp39-cp39-win32.whl (778.7 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.17-cp39-cp39-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.17-cp39-cp39-musllinux_1_1_i686.whl (5.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.17-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.17-cp39-cp39-macosx_11_0_arm64.whl (960.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.17-cp39-cp39-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.17-cp38-cp38-win_amd64.whl (869.2 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.17-cp38-cp38-win32.whl (790.2 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.17-cp38-cp38-musllinux_1_1_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.17-cp38-cp38-musllinux_1_1_i686.whl (5.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.17-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.17-cp38-cp38-macosx_11_0_arm64.whl (952.2 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.17-cp38-cp38-macosx_10_9_x86_64.whl (997.1 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.17-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 703.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 d179f487bd71208418b18d499a789b2df875a65f55af780089305a1d0c96f9db
MD5 bb2f4ef391c0ccd58c4e3a8140a15d9d
BLAKE2b-256 16f6ac54f73595f8c0049a7a4302fd2a48372ebf36cec8437da8a5f7d190ce1d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 846.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4697d0a11ee9b49c2f53270cfa6427fb661772d1248b64fc2ea9cdf9f13bc884
MD5 b6eb0ccbd4f0bbaea4a6d9fe77aa1512
BLAKE2b-256 ace77cfeda78075c64b1b3cd287feb2bad3e091695b02634a88c521311e45c37

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp312-cp312-win32.whl
  • Upload date:
  • Size: 760.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c3409daa08901bf0a5c0158e4454565d415e8d358ee1d07207a4eac801d48a92
MD5 d2a6e88f98bee2e3d20a70e7ddef6777
BLAKE2b-256 fb94c4f7a9ea4fa03e2925740e66ce31d92627b9b6b903661e747bc8f3162203

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d7db0efab585ab2c501ef72b397d8c51c093d4c9083f471f9a279235d8f431f7
MD5 10ecbeb9878f016e4cd2341597ff37aa
BLAKE2b-256 bb2c46f6ad61e499a3238694997940e94864e76b2c679c14a09af70a1de1241e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 417b9c7a2c1883d304dd564d561e588b0282b0b70ba9d556ce6c6dead5ff9814
MD5 2a9717c00f68a5f33fc5c25c4f14b4ea
BLAKE2b-256 7a97f0b8c66c7358f5b819ce559f822c38af0425b733344a52854c035cbfeaa7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa749f566cb14a173dad2ecb1b1207050211925eaea73a51bec399b5a5aab37c
MD5 e2c372b9b54290a4bcfb3126c465760a
BLAKE2b-256 916a6dd0b691fe26187290075acd7b8491f0af02b7b791bb803c6de7998d7806

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 38cbfd69720d7950ec097f129c0e40f08c9d2178d14d3e56268125cd98780075
MD5 f20b349d2e1618c2960f4cd1fcb513e1
BLAKE2b-256 f04cb625c3f7ce2f11bd9200a663ee3adb8347154d10a77a9f4e3ff101c12ecb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98685d42fec974b5fa9e5e6a4b3608bf95b05f681694186d2dbe2619e2165c8a
MD5 28664e7b38f1994d9c3597629380728c
BLAKE2b-256 f8f5876a6598c3043db69f121d72025e4fb748ad71f7787cbefc5b004ba90fde

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55619e498e84062e77f33230250b3b7806b9b1a1756c509364925a90c521cea0
MD5 0a352d0becf8afc9060b127e3a3f7f7f
BLAKE2b-256 ce1a74c5963ba92c0dfac03661870b1edbededea9226ba6e843ce9f83934a22d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 717.7 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 6f40d09a24fe134df65b43f11c61e90cc6858566dca75d8780806cc90dda2239
MD5 090931ced75edfbfff36162ac7247212
BLAKE2b-256 1187c691184062b3c49b318266546c31386aca5139f1c254fc883cb130460c4b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 856.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9214a3dc1338b988fbc45f8b16e98221b44297ed91cd0f4bc9d8f03f8a010227
MD5 5fbebf7f457b073c38a685523fb550df
BLAKE2b-256 c46b3f3f6992e9d8461088a290c8a10826017975866d8ec7faad77873f5e8694

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp311-cp311-win32.whl
  • Upload date:
  • Size: 776.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0c601b64a7aa8dbef8cd945a0230f0c3e36e23eed9b23dbe3e3be8eb35af1a36
MD5 4e72bfa1ef423f85c570ed5ac4681f4a
BLAKE2b-256 6e774d5f415ec14d450efb5bdec1624cc0c1f47b63c15c613da51dfb5aeed07d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8ee3e884d824e2a977998ad623fc64c7961eea5de4756044718456d12ce39b59
MD5 a4e193594de92dee97c43516ce5e4d80
BLAKE2b-256 13c54f17b869dee576478d9b3674f4c5fca7fccacc74c017e575d387c4583a56

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4de5d5b454a4ace3f26f2c6837dbba71d71631a6572d01c589f1edb09d634eac
MD5 53f4bf0861eb30a1b3bfd307991ae01c
BLAKE2b-256 8e81b49e3c2fc6be5888a190bf2126d8915849b8eea61e61f824469cc487bec1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2dba42fceb997eed9c65ea14e3e9f91ef44d6b5d1dfd011a3650927adf82a05a
MD5 0f6d31333af0baaa0a226b528a8a1ab2
BLAKE2b-256 1ca9ceefd076007324f8c1d26d6f6016b106ef82f52cb080766949eef0f70c1b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ce6e3b65c919bef3487e5ea4609f6a3065872de7d1d45c9c5b99ef9cefd672da
MD5 6790f63436b950035add86b700f649c3
BLAKE2b-256 c697aac0dc2c32dfea1bf9bb104b5682f55c595ad27f3640d8d27c8bb23643c0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c54f3b6ef87af292f35f397ea24a02ec879e4bbc2dde1022f70d1c05f15c23e
MD5 a377a4739ce2a6fd6882e1c8c55aa49a
BLAKE2b-256 12deaee294a10ed85eb9c0507a28b1bda23cb4c0afeb9fcda9f727c0f370db85

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20fba8de8bcad85798ebaa911b396b87bfa75d5f98cb5da40285eaddf755bab3
MD5 c59522f705f8ab6ab6a3c25c79f23618
BLAKE2b-256 346b7cd5db4d7211d75fa42a866ac5c76941e3137c9fdd4203976349ac0329d6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 712.1 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 6567b5129dec6d76824ad211eab6a4afd02484e073a201f50417eb4a99822a74
MD5 de11fab237d06bc8d25f8dada0188b77
BLAKE2b-256 143cca8f66ffa72bbb0165ac728b9c3ce41704d896fd1fea205bfdfdfbb937da

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 851.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5eb7a34b8a16f4057ae8bf019ef10caab293813d16800702617ec6fd99df9dd8
MD5 39df249f8c15b85f3eb9866f91700586
BLAKE2b-256 6c58fec0f52be5e9451f0559c884bd524f8754a6ae1bbde28b08e1cd1fefc372

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp310-cp310-win32.whl
  • Upload date:
  • Size: 777.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0e44572c2381b7ec6b79d2e1c0201bc4480e88cbf4274f41b82153b20256f0b2
MD5 45cfa24da1778ede8d46066ba2da291c
BLAKE2b-256 15e3b070bd575f0454aeb764af0deb49e69f1eb50cc4036e7252ed7f8effd24b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 48e2b7636dabca0600b912ef556efd250838d17036c21d832ab30ab4dc3827c5
MD5 c54655fca85602e99c7eb0698554c494
BLAKE2b-256 0d44cac5d7756a050d7861e271c7eaf27569fe23bb7e3e866c25e1f2b087bd01

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1ff49632374b3658a98755cbd5c952b16959566d528aa1edcf4c8915f3f8ada2
MD5 c9fa38f772c8e5e50b09204efbaf8c08
BLAKE2b-256 345ca5f9c03d9ad910a0668b28f594e68ae79c00f22fc067df00025c491a30d1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74ccd05e30ed16928b272209f7a55ef8e0b4a84af7b6c8a9628145016ef27c34
MD5 e8e629ecb49db31d73e846e54eff49f4
BLAKE2b-256 48be8d4c2422f5618d297156fe1f45a19fc94fd5bdf16d88b441c8f7371b8335

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1aae723186750e17607b9197aa0c048960aa18ed63fa2cac987d44ef299bd578
MD5 e6dbe85e1575a251e636063afb6c644a
BLAKE2b-256 f47b96b949c868b25b9b73c239871d2172c9782776b5b2c347d89014458a45ab

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5af2d1b5ae09eecfdadca47a58429070c28e0d255059c067f1fd453e289e4d33
MD5 56dbc5366f5c66f7f958a2b25772e8ff
BLAKE2b-256 38f42a8e240e18e9bebf3b4ddc8cfe81296baba3352dba65025c1ae0edf82a6f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2220488d9d0b49a1eef5c435aaf03c86f86c6da99c859b032dde99f9b6c01db4
MD5 86d0f7f0864cc948e9cbc6d4f38c6b29
BLAKE2b-256 1a8f180967968a3c5915d97d993e12f30efdb091f7693a8f8c5f476705a5d687

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 713.4 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 2655a80331f98116805ebb53848e81978ef1430cdddee0cf4efcd7fb2c68417c
MD5 b2c584e9fa5e06f5496695a8bd2f1972
BLAKE2b-256 9a34c728c521ea041121413d77094c36b21b92ef2af8db4370342f9f9101dec2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 852.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6aecee10397ee3f9d4fc7d6e7c902993706863ac6bc2dfd2b3a6c90a2f3e8e48
MD5 53570a90cc8d812caa982cf53c8d52ce
BLAKE2b-256 547df2df1cbdc283d6ada0314242584363bf94de1ab5a829c9200590d18b04cd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp39-cp39-win32.whl
  • Upload date:
  • Size: 778.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ea73ac7ab899eb1fbc8d25a042ff4c1e9f11b9be0562dbd1d21799b7a909de6c
MD5 d05dac993067759a6351eefbdf4f5a0f
BLAKE2b-256 e13aafb86ffcede235a556116c67adbf208ce6e40eedb8fd5ca9fa0731a9ce6a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a8160d6daa37ba23034c1115b59ebb942d83f6e5542101e6506fb2f1475d6132
MD5 1f6df02399d58e1c43e4517006c9c6a2
BLAKE2b-256 d05caccc49eb92be5392e81f84320c568c257a3180f0d0ed60246dc01ee91ef3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0867c729ba8d497471beff009b60985fafae7980ef8fa12ab612f4e82dd23f1f
MD5 30348d56d67e2ec71e5501953bf7abb0
BLAKE2b-256 7fae857a7ee3a315b2063c36943c57e4582faa8e4d5c782e38416022953124e4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b22dd309d81ada8a490df9c607324e1f5ede72f5161701fe95109cfbc73f1ffd
MD5 d3c85ffb621658a496d1aca597f54116
BLAKE2b-256 233d8340309f21610232792c81ac23349e1ea7927a6f02154441897ae9ad433e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 40da4e50b95ccfc86ecf8f7a87a45a66c6a42c4676eff2a2388c857395ee2124
MD5 102286e9d1d964420ae703c662e97d99
BLAKE2b-256 076492eddc794c4ee50fd34b61a9e680e709949feb9f9296ff1c0067dc5e2803

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cbd1e9b283e354d4607d69f769e8857e72f94ff2eb0712c48bf708883c561f1
MD5 863059c63e6cea06a928a830c2e2a212
BLAKE2b-256 490a485b0c2502a35534581e5f24515dd6471932b54b580bd35e4d4f55c7db9c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04838a40b47f65ed397d0ba7e5c759507447e0854b8a939c5c84fba80e75b53d
MD5 6dd0a11dad157303eba2b3a93b19015c
BLAKE2b-256 a91a40f5a04a75d48d13977916bb441eecf173bbd872109c823d2a6cc9dfe030

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 869.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 69ecbb5963cfefc56be50045fbf0d85886564b4bed88272779ec6edd0ef8f59e
MD5 7936db59083a9840c23b84b84e735b24
BLAKE2b-256 c2ff8dc3954840df28b9d9dddf961f8ed6e561c5a38e6499b9c4676b392bc346

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.17-cp38-cp38-win32.whl
  • Upload date:
  • Size: 790.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c93bc5d308bc3f2da095f27a90df66d5aca78243d392669695f3eabc30c8198a
MD5 e4d270a7b5212536eef1d80ad70f3f26
BLAKE2b-256 b40101402d0972b41620b384a838e158ac248fb5bfd2f57859855a11515965ff

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0dbfe10fee92edee2dc7ca3fd31c3332482c443d4ce7998027347bf9805fbbd4
MD5 5642fe976648a0061673b62e4debc94c
BLAKE2b-256 19ed8e5c3af3f25c75c2ef17cd2d48fcc12fc01c11a157db23f94c2b0f8dfcdb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a9028c594351bc257d0992136e3023b9bd0b72fb9977b7e53db0da721905ccf7
MD5 de1b8140f3b67565deb7a753bc4f575d
BLAKE2b-256 927402b3de1cee6f0cca64dc6ddc9e5c34b14dbad8aaa5ccb8521c17bdebbc01

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf7e912682b76634f652a4d58ea3ab814c67449a43abb1bdaf5ad0fac5dcd2d6
MD5 045a28639cf7b569cf7e3d3bfe8f1ef6
BLAKE2b-256 4a3123d82243034ffdba50278638cd383f0d124e881dfac68238a20d26b5c557

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 00a2588dd83867fd0390f5e0946a5412eb726f95f41d0c98fd566d0bc82da450
MD5 67f7d2558a354ed9d9ed340310b05762
BLAKE2b-256 838d1d36c3fe591481bbf6dd24c1feba42da78cdd46c0d9ca63b0c4038b3b665

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f59f677039af696c6682add44e97d449bdb5c30d72f3110b63642ede245d4263
MD5 ced4ce87aab370c2fb7967c276eb8893
BLAKE2b-256 a2ee6b5d5b17ab1cfd7d5a6a719efe66c7065dbc831355bc1703bf41eef06e5b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.17-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.17-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd089497340ce28c36e1b53d58ba2028f2f26f5ed94bf9cc737b4b3ce7e252eb
MD5 a5b505705c24161d61ae60f59e08ec5d
BLAKE2b-256 aa29f10140037332bc337c8132859ab16e34645bd0216d0f49061aa0a94916c0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page