Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie.vision import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 2.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 2.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.18-cp312-cp312-win_arm64.whl (707.9 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.18-cp312-cp312-win_amd64.whl (848.9 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.18-cp312-cp312-win32.whl (765.5 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.18-cp312-cp312-musllinux_1_1_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.18-cp312-cp312-musllinux_1_1_i686.whl (5.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.18-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.18-cp312-cp312-macosx_11_0_arm64.whl (956.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.18-cp312-cp312-macosx_10_9_x86_64.whl (995.0 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.18-cp311-cp311-win_arm64.whl (721.9 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.18-cp311-cp311-win_amd64.whl (859.8 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.18-cp311-cp311-win32.whl (780.6 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.18-cp311-cp311-musllinux_1_1_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.18-cp311-cp311-musllinux_1_1_i686.whl (5.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.18-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.18-cp311-cp311-macosx_11_0_arm64.whl (974.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.18-cp311-cp311-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.18-cp310-cp310-win_arm64.whl (716.1 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.18-cp310-cp310-win_amd64.whl (856.6 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.18-cp310-cp310-win32.whl (783.0 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.18-cp310-cp310-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.18-cp310-cp310-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.18-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.18-cp310-cp310-macosx_11_0_arm64.whl (971.1 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.18-cp310-cp310-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.18-cp39-cp39-win_arm64.whl (717.5 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.18-cp39-cp39-win_amd64.whl (858.2 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.18-cp39-cp39-win32.whl (784.5 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.18-cp39-cp39-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.18-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.18-cp39-cp39-macosx_11_0_arm64.whl (973.9 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.18-cp38-cp38-win_amd64.whl (875.4 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.18-cp38-cp38-win32.whl (795.9 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.18-cp38-cp38-musllinux_1_1_i686.whl (5.9 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.18-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.18-cp38-cp38-macosx_11_0_arm64.whl (962.3 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.18-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 707.9 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 e103ef4506a2ef462da91213e18fca7bac309c67a6252e7f2af6aff7a056e2b8
MD5 02dcab16256ed8ecf78d5d9a73341c94
BLAKE2b-256 30ed94642317a8c3a47f46dfccc9181a30c1604177e5dd397886ebcb15db7350

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 848.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5727577b249f92d95d29596c671adffceb095f7d7a4afefec14afc15b9306138
MD5 2b9c7f515f5465675a190559ca91318e
BLAKE2b-256 b231a5caadb0856f8f5c4ec19b784a66c5bd1ad39d51a0902be2494c1dc9b48f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp312-cp312-win32.whl
  • Upload date:
  • Size: 765.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 6e071f28f51bdad23b9cb0229b2a99184e14b62bae78f2fe6888d18cbef9bd1f
MD5 1bb6b05fa1063f62e079c994abe6f3a4
BLAKE2b-256 513f77e524110ce7b5ff3a7bd94e8123e3af9966435455d4089818745d90ecb7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac70521db4b00ee94d0ee1912e2af3a969ae22df54dcad134beb3f9dde9c9c2d
MD5 03723be433fa3622b61f3b7b9c233184
BLAKE2b-256 d4188a5681ab2efc42193b664a39efc582a8915af6b723637cc1d76cbe88c368

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0c58197691c4cddd941be80452ae9c48b737f5977fa68c724ba51849263af1f8
MD5 4eb17d8cccbdd5f1472156e8461d507a
BLAKE2b-256 90d3d9c9d697be952734fdd8bea99edc3d6ca88b6cbc5a8531ef52b71255fe05

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc657e7311e436272cec0a403ac571076614be6a4e0f5e255d2133e97923ca6d
MD5 89144d09ca8e81a870cf27a74dfb0b4c
BLAKE2b-256 36d199dc7908aca42e5033e25544b1b6f3ceb5ea6078e3134e4ec12263d18648

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6bcf46451d15658e2d4afd2d4548dfc2a64ca97392981b5432b0b99fcead9a32
MD5 de7fa84a1a98914c3e3115e7b752dcd1
BLAKE2b-256 64c7403663a00feeb3c9b32c79342e6de69bbdc635bae4282a09de2cf83cad65

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66ab9fc0e447c8b1c4d7d9e61a530961bc612bda104809a123990225adc74db0
MD5 75964f3b7bd06d700c4be7fcae0558d2
BLAKE2b-256 59c42fa5f1f8e90a4a362a3c772fff3dc137429d1855f9a6f22eb7558c950627

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e762067d5ae734b7c225d510267ed3025c1c6eed3bf4a6153fb6fca6f294e34b
MD5 024bdcd62b7063e4d3b0c386c3ffc131
BLAKE2b-256 9c8431ee20449961fbfed085955ff5e66c68e49fba34ee9d5297244ec2956a55

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 721.9 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 b33c0e9257a682c6c96b20ae720e018bfd9aa9f23ec7a8fc33a7cc0f6e241d45
MD5 a9ba8f8fe0b932d3a78d43e3cc0cdbeb
BLAKE2b-256 d7a56c4a19ec716679090bfdf6cf59d0b8f27213913258bd362e12be8c54db56

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 859.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae17f08a51bcabe6eecadb069b2c13b3b50a89717f69534c324a0ac0d130ebca
MD5 21e7e63224b1908cd408d1b1e628860d
BLAKE2b-256 e68ded138f82edca8ab7fe8118986841b716f32564ac52aaa7e4c431b58a40aa

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp311-cp311-win32.whl
  • Upload date:
  • Size: 780.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 38ab91011d89451ec4692707c779929b34e2e0c6fd7eae3e9cc9991a7d3933cc
MD5 3bde38cf441b6542b6b7c78d4cae2e42
BLAKE2b-256 289ab6c72e3dfd915393f119900b712bdd13d27843ee068d5d901ecc2305726e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e29e79510f38f7cf45ceedd16ae9cfec8456914044c52e5490d44cf005419d75
MD5 59b0deb4e099c35d05b2d3cf9db12686
BLAKE2b-256 5980130d84e95d081463aad62b48a95da91996edabe427839e0cfd3dd58d4b0b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d1f79dba9f84d7f1f2b19caef850481fa1f2bc719e7501169e2dab786df16222
MD5 bdd0a9c46ee0546b9ce1365dd78447d7
BLAKE2b-256 6438146563f2e075c97182509951aeedd121d0f1b52127cfad23eb1077340a0e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76014c9fbe1d926de62573deb120d6cfa96041187b69a0020c9bb29bd7d83dba
MD5 be466b95ade46b7022a4df2988daa12b
BLAKE2b-256 3e37820d3090de4a6e0e38bfacef4fdf951bdc7475536d790f248bd256fb723c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 addede5623ee84332269d04c56c5981576ba82ab8e356ca623f576cb5e0150b9
MD5 1afb508114ca8d7d1aa3532a7fb1a8a6
BLAKE2b-256 4f6870c05f2ee8c97833dc05ab3cdb73e3c3a9899cf6234d0192ffa3fa10430f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ee304947c7ea2c0eeae273784a530a2ff69418f780bcf6a25ab6471d5bfc400
MD5 09cfd56ac5a6f373762d90482147849e
BLAKE2b-256 e8084e4846056d0ab6c91223a92f2983cdc7f3c15994b168017d5068094bd710

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c29bfab96cab7508036ec74741c3c401e742610fe696a92eee86cc87beb389e9
MD5 840336fe9defc8e2ac9e2e7966d8187c
BLAKE2b-256 28a6130fa7907e642b325cb364f9b90cb79e8e0b0fce34c92de6b79d5293673f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 716.1 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 b4d40bfaa674862c5a9e514ea867e010e51df80a75bbd8c7a106505f0453f4ad
MD5 0f3f8c4ad74f41c4929f44b8c07be0a1
BLAKE2b-256 4ed2bd66b245cb88ecd84bd27290a008b8f9b9800d88a00429cecbf1fb87f995

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 856.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 46c0316e7fa703c45ab1e73e56ad8bc8a20d77dd5f0d3e502fb1bbee08ae2454
MD5 3e103d3d4da49fed51e50ed6c540b080
BLAKE2b-256 e1c9724fa03647480eb04a35b12f126b430b04ee21397d2006539915c2fe3c57

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp310-cp310-win32.whl
  • Upload date:
  • Size: 783.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3dc9717aaaaf4dc03c5b6a9c1e455a36aca022d1f31d09f24dc320926cbaa3d6
MD5 d46cc6638669954abe4d899ea43de2af
BLAKE2b-256 a770432256f34b878848ae780384fcccf6b2b56b5f3308b3f06e7eb12122c34d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e9f7b8539d90345c6a4a47728a44e08f18179c5c93ef408672c092139393a6e0
MD5 998beaca2299d12a40afe155a05565a7
BLAKE2b-256 a7c681b957f34ba9a1e581d1bb297af59a8cf93f245f081d36f10d81ca69d2e2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 73fb2937c6c1545f7416aea87add1323407d9248511fbfdfc9a6072f941dc8d5
MD5 a822d53981b9e9e5bcf71c3e66c4c38b
BLAKE2b-256 4f33dcee1d1fc76291d03fd3598f9c1304ab873d2ae611190489ede09803905a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 612ad16e6503f135a6df13ae8e8b36605968c29d3c9ce1747a4c48d0cab1eca9
MD5 71b59c7b927d75faffd7db157a9fc138
BLAKE2b-256 473afb17976e655cfaf78e29aae626a73c59263bc01c535c475ba0aa58111031

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c7f9dfdeccf6dad96d5a6bd634f3d7d030dd861d001dfe658ea77dec33fe5a70
MD5 62fd577ebfc67986d74f688b5098d8ff
BLAKE2b-256 5dba1bf2238d2733e3dbfb14944ac8947e0436c8425b19772d89d26d81332e88

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d6a48a39a80ce1fa075e9d14a661c4a3764f173e4e7f6f2fb234f9e085a94b9
MD5 f702a175407f1fad7d6684a1d2cd6f25
BLAKE2b-256 4c09bbf877c701fd30d0dbcd28b523ba10548530668585e484dcefca19e127ca

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b9c68dea19b9b1db1015a3cf61a31d925b5a383ffa9b69775efaa9d1aacc10af
MD5 0fa22c4380a33d83ad295c4dc675636c
BLAKE2b-256 6a76ddcc34e52f6c8e3ad43806a6195adfcdd80c71789cead02857dbaac0762f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 717.5 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 ba71d7507b19c59417fe8b2228e7b17c7d73cbfd3c3e370afb1b68b2eab282a1
MD5 6dc1d5fffeb5e8635d37e568103d371a
BLAKE2b-256 0076ae388d9b855feb241c49e5de6f74ce8465512d2cdd7855d9d9b0b77f4c32

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 858.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f11ce93be6cf4f157457bd346468700aedbbee7963e6d55911e1ba4c22672500
MD5 7a299166ba45c69193d44d9dcec67313
BLAKE2b-256 af4d5209eda6904a50c461426f921327100c6cb6521a23f079a8b8591d494ae1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 784.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 710e39c6c30ad6705d60317ae7284e1a6ee0eb33307d9f362ce28a5d9a1ec422
MD5 36ae3e663c6219b5c5645619f764b9d2
BLAKE2b-256 a8cfad0acb869d5a8e7ce13a2aa68ad4e0e008d476f16592ed7c098fe1c22dd5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 78aed62d82f203c05b3053a3d7f77bd881b87e0965c6d8192219d7da88fe2e6b
MD5 af7651e90d35cf33a653572eb758ec69
BLAKE2b-256 cef29d018e21b7fa018e63bd0a5b62a467dfc11eb254c23fe073c576ac8b4e77

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c09219e929eefde89b3182ec41d2aae8b548a0db8cbcebe2f51acd67b2c10b7e
MD5 d699d4e13543c6f2e5a12a684051bbda
BLAKE2b-256 96a573e80db1c65a15c22918621aa3eee7f41db85cb2122b29c2eb728f0050a1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 796791c47bab323367d7b7947ab9816a710ee07c8efcf265d2c70690d1296f36
MD5 71350cd3481d26ac01b3113b20716716
BLAKE2b-256 ab2724e87244e87f6ff5861d243b05d396015238465cd320828269c996018fd1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5928ef833f135fadb1cc016b54c079a1a930e2660c02077bf874cd87f6e55b1
MD5 f97c0efcd8694171f61987825bc2eded
BLAKE2b-256 593a7f0516c917e04d6872f5e0147a81156bf87ced465686d466a053d10e9d8b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6a6149001ced66a3af3134457195cecf9ff1175275723e6675dbf6678ace251
MD5 69c8ec13086923d8ed4ee215c54a140b
BLAKE2b-256 c7fd743282dc45e29d1149a0859cb91066332d1cbe22df56571edfe43a24fa62

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bff76cfe0585a38ab986d7cdd0b6be59e0362ed1440cfd96aad9d6ae1826fa30
MD5 d7fc9bec1db5f26bf1fb3cb055225ff2
BLAKE2b-256 469ddcb57181c1980eb79f1280ddf79ef1c7a0fd72c7d9142f203d5315f75f03

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 875.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8fe5b5ae2c1d4b44f63a617f4799cbfc99e2635d45e32317059da5f58750944f
MD5 3e8dc77c676375814661ea922cbae4e3
BLAKE2b-256 3f36c969304b7a2d4c2839ed8858b3d0e7f1691fb6adc0ce2955781b741334c9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.18-cp38-cp38-win32.whl
  • Upload date:
  • Size: 795.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b0e58195fb11cd0840f02366f7a0c61b59770cc0132e8eb428414a6f06f04cec
MD5 a35b1e267e4f4670c9587f345a8ee30a
BLAKE2b-256 b070c36ed4950cce1cd7d0f9c2ec453bb1029870c3b6c39eb1f85783578837a1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 57f02bcd250a30f24cfef42eb5842e567f569e03bd19696bae8f70a206b7e43a
MD5 9d02c24d495c50db231ebac7482a97fe
BLAKE2b-256 e385f41ca1b6a738c6cb87252b5e9d881f2153d28bdf0030d015d9960fd48e84

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4c97dcbb084613ce2d7c926ba4c54b77e1266a62714a86e657cfeec3de287d06
MD5 88e247c95950c015226b1a5e7fb665d5
BLAKE2b-256 eab788b8fa5c0f376168d331dc11c9512cb991d53640ece06a31295ceffdbac5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0900e265ab52abe6fc91042af288991487fe79496ed62a5058b6f935a0d45473
MD5 cc6abdfc2dd8d96d16674f4843af0999
BLAKE2b-256 810725f5e0545ea484e7e050f021234528ef78b246ac7789fa85d404e90bb342

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 74bf87a6354785bb1eaf60d899d2f78ba96cfbe260bd264b958a5477caba5978
MD5 8c559b0daed2a72d564af4046c86cbbf
BLAKE2b-256 8a22d5aec6236b34e5a1b0779aba8e0c67476e72acc41b4aa71a83c98a1b4e72

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8f590d053337a0b0189f866556d59b01af007b3960e582f5c3a91909dae577ef
MD5 177c333cdcafd0abfb056f92a6f2c329
BLAKE2b-256 59073d8896a05bd1883cd29f958b29cbf32f58b4c37a8bc4f33d853b153b0611

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cb574e2a0fb52371b79226b55cb07842ef205b537ff0bd4494268fc1eef5b4d
MD5 66039e5daaaec1ec57e041f72a5dc48f
BLAKE2b-256 2054791e9e5767eb8ac397c466edc8fd8eff19aa72af21946237c266eb9ef052

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page