Skip to main content

Leap Labs Interpretability Engine

Reason this release was yanked:

Issue with isolations charts not being reported

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie.vision import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 1.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here for EACH target, e.g. [[2,7,8], [2,3]].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 1.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.19-cp312-cp312-win_arm64.whl (712.0 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.19-cp312-cp312-win_amd64.whl (855.0 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.19-cp312-cp312-win32.whl (770.6 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.19-cp312-cp312-musllinux_1_1_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.19-cp312-cp312-musllinux_1_1_i686.whl (5.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.19-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.19-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.19-cp312-cp312-macosx_11_0_arm64.whl (961.4 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.19-cp312-cp312-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.19-cp311-cp311-win_arm64.whl (727.0 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.19-cp311-cp311-win_amd64.whl (866.8 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.19-cp311-cp311-win32.whl (787.8 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.19-cp311-cp311-musllinux_1_1_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.19-cp311-cp311-musllinux_1_1_i686.whl (5.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.19-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.19-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.19-cp311-cp311-macosx_11_0_arm64.whl (978.3 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.19-cp311-cp311-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.19-cp310-cp310-win_arm64.whl (724.0 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.19-cp310-cp310-win_amd64.whl (862.8 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.19-cp310-cp310-win32.whl (790.8 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.19-cp310-cp310-musllinux_1_1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.19-cp310-cp310-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.19-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.19-cp310-cp310-macosx_11_0_arm64.whl (980.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.19-cp310-cp310-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.19-cp39-cp39-win_arm64.whl (726.3 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.19-cp39-cp39-win_amd64.whl (866.3 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.19-cp39-cp39-win32.whl (792.6 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.19-cp39-cp39-musllinux_1_1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.19-cp39-cp39-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.19-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.19-cp39-cp39-macosx_11_0_arm64.whl (982.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.19-cp39-cp39-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.19-cp38-cp38-win_amd64.whl (884.1 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.19-cp38-cp38-win32.whl (804.7 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.19-cp38-cp38-musllinux_1_1_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.19-cp38-cp38-musllinux_1_1_i686.whl (5.9 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.19-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.19-cp38-cp38-macosx_11_0_arm64.whl (971.6 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.19-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.19-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 712.0 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 a6cce13c9905e24d4d4b84c53f5f071bbc4dea7089f871900c714a30c9c200c3
MD5 fae155b2330b7b74d20a10a33272c429
BLAKE2b-256 c714245e5546987e706e0d3728c979a79c966a086c6129700661c16846b81501

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 855.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bdab5bda03c37bf10f59aadcfffdb59b3403a59fe0df53cdb76644a953054f7a
MD5 4c8d7e13b558fb5dc8a8be6e42becd66
BLAKE2b-256 8dea056ed6729bf6e4d947bc0c69e9249b4d2d41e8fa5b46ff340ce8eddb05b3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp312-cp312-win32.whl
  • Upload date:
  • Size: 770.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 989f0ba63bcbabe0179ebcbe514f647c4b6c015cfc95394446a6698cd1c3ad5f
MD5 4d9781fd5334816a2f7fa3123b38c3a7
BLAKE2b-256 69112cc01a9ef048ac321b5288ff5820dbf1fe0b7d5f648f9eb1ad67ceb1ca6d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c630490a52b2944751970d41b2ac1b336420d3ffbdfc0eabf8a82b881c07267c
MD5 393ddd89514130fd5bb04ac35d83f5e8
BLAKE2b-256 f2703cb4c3e9521b1b6a0fd3e0b6e39e5a7c25821947cac869749a6892c796ce

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 043e1fef0fc5aeb7b98b3cb028a29f67ca940709a1e78b0bba668a9ad4688274
MD5 52c4ee95520bbee30250f2527fa808ee
BLAKE2b-256 3c8db26a8ec84a184f48abbf87dbac1d5d60cd07648e77ddd10f347848488ce7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7622a6ce5c6e5e14e08bba2268ba41061a78ae6d1dfe39a96c275693289ebe90
MD5 2911d846e5f0db61fa60c8595a69969d
BLAKE2b-256 e3746228b61bf7305d680981524c0c894d3dcbccaa0f8d07c084b34993311164

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3bd3de6a5c32898518474d3320725d4ae219341400cdca1242d28911c48faae8
MD5 a62066c0b7a1ba718657e3be665a288b
BLAKE2b-256 aeeb0737de1babe8425f00508661463e554822adba157d6f051f144a7ceaf7ce

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e6ccff596ddf630e74e278232ae92df00cb51a53ffb83c75dbf77e92a155581
MD5 2c509d0ff90865bf001a04dec1eb0b0d
BLAKE2b-256 e6d27faffb30ac3ae23259dc5533622b0da37602ee3c8540993368bfdc3e0d0a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52f2b4ef8e7c314bc1f65cbab65f3781660ca59a9b79878bc16a2272dad7958e
MD5 41616c4c31386cb8521c2421c34a081c
BLAKE2b-256 c1d4bb1d93b67de5c4ff2c2b7fe5f485de67a8cd5e45ebfd0d6bf0774cafe5d0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 727.0 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 3644d5e6abe127cf3f431e6537bf70aa9282d4a4e6bda7760a781daf0086c6fe
MD5 3f644f9b2793a2564b2f58584ca45f60
BLAKE2b-256 d7d9db77ad9932b0eb44b382350f6fcf7264f0b012cd893d24d638548709ca64

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 866.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3ab2a9a5a9b588bd01c71f3f7949776a46d739ddb24a4ac7a0aface8a3f745a8
MD5 711fdbd54ff2ac1a8abb03002cfbd47a
BLAKE2b-256 24dbe62917790c148630600ca9d5d0203ba15611c4263f99078b6833a717f522

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp311-cp311-win32.whl
  • Upload date:
  • Size: 787.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 544b1c4022ad54d485d71e74c124a458750dcb7eaaff87c13a6f647fe128ecdc
MD5 9b66ec10c640026031a61aab9f6a118c
BLAKE2b-256 ddcf73bb9c0ee2ae2df7168a670181f7e7374d681e589d4a0a15f76e80d5469c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e410da8550fe75bb72fda79b2a94da43ceaac46c0e01c5ef8a0c1abc46b6824d
MD5 874cdff8713ae71d4da8d7467afd3f95
BLAKE2b-256 ec66885d358324488325822db9ead1c22d03413a6893d3350fc292f205c45353

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a754cf2976ff9c4add1b0a171335ea2eccb9f2a6f8ff27ce3459607a6be5f22f
MD5 cdbf68f05007c42f171c037c2a867396
BLAKE2b-256 5359e139ebf1bccff745cc2cad81d48ca82d41d30d3dad9d2cd9f242e0da9844

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65088cc4020713f9ecb1cb492e5e7b28af7832bac32550edfc534b1570bc0f68
MD5 fa52f9b5137aa741b1afd24203db6b59
BLAKE2b-256 2ac1872b67e635aa04963ba78352ff3357bb91b89a23c607bd697d254deca140

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb5cf20fe6172fe9ec103f7612e8b891866c73dd166bd89f800666dd0888d637
MD5 e73170292815b473543767f905db4a8a
BLAKE2b-256 e311e1153f84fe5bd89aac62caccdaa63243bad910205778d3497c2cff6eeaba

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20a4baf9c2be89e59c0413e67bb7f573d38248815766e9ee6a11ec44417041a9
MD5 c057b2ac9ab4c24c0ce6689c09f6f8cb
BLAKE2b-256 b14d6e6a64228bf50c8162580b5945b337b1316c6f48255ff7d9bec8d4f5847c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d226b4cfa872fb610d8bc8fe61c367e804dcb4af4455bebcde2f39d9128c87c5
MD5 487b18dc1410e540919fe312642d784c
BLAKE2b-256 42151cb94389bf8890a98470871ae160bb6bba58b965f1dd0a66bbed75b94e80

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 724.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 033c707bac3b2e394249d3a37a65e66d51544d48620e2581afa005eb78413db8
MD5 370022ce7a500214af19fee64409753f
BLAKE2b-256 ee50426d8ec4f4927f9fde47574a3d5eff2e8ee48e666b9e7bf059eec4ca0af6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 862.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0b3c51c892b29531e4acce42488075655ab627195ae7811b7e089da62004897e
MD5 1ecbb8d2f5db23271942a3afd018691f
BLAKE2b-256 7a36d75276c8e9eeace7fa25e3f895467ee74b8e03710663f4d4f4d28be2edab

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp310-cp310-win32.whl
  • Upload date:
  • Size: 790.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0f841732b3da20b80c7be65311af291c7f3a0ad8e3a31d66e5f352b6433e8dd1
MD5 fcbd708178596b6232b5e9a3fc97d6c0
BLAKE2b-256 9bde18700c7ef672251943c7966ded9d3d48fb3ef1ddfa3deeb3c3a7712bc486

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88a65533db18da28341acb82eb23c0cd02570b1b6d701ef629dd8b20d7536441
MD5 a413db2845eee7dd41e62b0989d11e4a
BLAKE2b-256 e5e7fd054e2c5565d20c2cd8237d0ae6e444468de172944a61c7d61ef7a9818d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6735c2d7aed4b9259d3f58ce97310130d27ad18d4ee20c09fc7b1da932e9555e
MD5 336902361d81b40f9209a91b6ad310e1
BLAKE2b-256 04ae48da435bddd2cf2e45add22c7fa470407f8e8ab658585c837e8186452201

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c11aebe81d0a96340f7ff18626743641cde3422174087fa983d9ec1f4c5f710
MD5 e08355af2d274d7b977c510b00ff665d
BLAKE2b-256 7e765b7005e22650d0941dc8d79060eff66b2dc52e4ae0d62eeb0c594ef8b05f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 865a4f6a3912ce97ab6dea52dbd90e77dfbf8e4e5ba4b6ee933189aed19b796a
MD5 1cf5526214d37fbda93ce4953fd32eb2
BLAKE2b-256 17b97d66de7c5d1ce1cd0cefe09020b1abdd1e6cf884a1273bc3cc1e93c7e2b8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e672ec169d0768317b0dae4ebcd1f2f48d7deb1dbfa47ce053040384332d83af
MD5 34aea326f74a611f2ef8289e4abda211
BLAKE2b-256 76dfe4bb7212527f5f8629d35e09100cac93079f12edaa8bb0e5d09c8a420285

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 528ecd5745a333f715d8f25f43133feed4b6758be5478399a0aaf9553a7e5eb9
MD5 77c8069f6de0738ed9c4976f7808ebc7
BLAKE2b-256 4a6c2d059a54f4a8063f5ebc9bef18e291b37485d9f2b9ff360de2be09700cc4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 726.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 cea5f2879b43cf9cc74335ce4e66e23fac5da560ba7a0035ea325fd944cae88c
MD5 a94557f7ee85ac106bc6be36dc824e08
BLAKE2b-256 1f12ed8da0baf5e2a23087f23478e0f42dfc56702c97c182429d0858a506644b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 866.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d04595d99a1d8439c7e7bbc18198186c22fe8d0e7f5c0f5e87d0b0b18178351b
MD5 47bd29b52a2ca266851dd992d8596945
BLAKE2b-256 0edaf24936d3a09edd8ff0653f67c3fdc5b877e6ead84d896070c814150777bd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp39-cp39-win32.whl
  • Upload date:
  • Size: 792.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 705fa5fc4f2839ca52912eb0c5780adf68a80bf89842342656c2075b7c71ecd6
MD5 cfe16b237dd0a4f770dcadb22c1a34c6
BLAKE2b-256 7deab646f568f96ac501556d008f2d242e767e8ae04d89ae25ce6f9afda2fcdd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 343f977d01773b557a60fd006d136fd0fcdefed23263b1cc031c02fd15b4c5b2
MD5 ae615f0fe65e6594db47a25a683f3b40
BLAKE2b-256 5bab760a69d1b21d22c03172501687cfb7934621532ddcdc7b8ba3470697e889

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 50c6ce4e695a7dba9e56d8b7cd2e1c9ea3c431e4fa3c71927c14fe147cdf04ec
MD5 be4f8c63d4594700e1e71c45de129a32
BLAKE2b-256 63f5fcaf8b8c466d34cbf0557f36d5cf7b572eab9ffbba750f12cd4840bfb51b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eec2e8c81a7074e759df6e2540ae15544150853263ad33d6ecaac6fa051dad8e
MD5 8aee74c3e88a3a6108c9d6b85695d4fb
BLAKE2b-256 c7c0baa514c15245682d9d5b17185606e911f0fe95e11c61da5f5d0e1c68b18c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a97519943f16da03c3d345ab1d217888327a9fd76bb6e565b3ea926b26c0cc5
MD5 49a882f7e2e164188e7c89a99a97e7a8
BLAKE2b-256 d614da292b07ddfc305cbcdb66c53c7342b5b6acd59042ceedeff98254c5bfc2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db920ccd5df6be38cf44a607120bf87462fd7c49e66aaef2d63f6997e26eeea9
MD5 771ff54d2fee38ed1a2e8a8a41ff2737
BLAKE2b-256 38c2071fb4dfc708ca9f70372d473e92b5da4835f1964e3681c42f7fbcb72048

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94598c7893e6192c608e3cd3cefe64c3beec2f98e9d90cb5e5b2723b0aeddb43
MD5 1a5699481d384335fefd11fda8b85fc8
BLAKE2b-256 5b12ff39298bc20bc45ec71c116aca910722c40c510efedb411620fab52ea42a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 884.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 00f8652b63b5f0a9983b9d76c58805448e8e14d89d45bbd2dd49b71dd35dea68
MD5 424c8bdb226d3f1694778ebca4bc9a69
BLAKE2b-256 843132569f7fac37df85bde091fa599b2f16247270a043665759312f912227cd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.19-cp38-cp38-win32.whl
  • Upload date:
  • Size: 804.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9443e369b1ae7caf2b141120d47de641a7ff3a010550ea341ce44191d5b7be3e
MD5 0d1cbc2fc34a5e9e1a0fa7eeb5e9623b
BLAKE2b-256 82089e8634e7836028ea3b1dfe345c7343262570085102d5c42f6827940551e3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe013947f643ff69ad1d78542ff06c4ea8512e59239bbca0501f155f82326d7c
MD5 80e49457eace01cfc2ebf3022a815d66
BLAKE2b-256 481709d212911085354df36b9f604021b24a9ee2f2be531060a383f685efb835

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5485be2d1849bebd87c809692714b284b19405f9c079f54444fecf9b427618ae
MD5 faed1de7d96caa41e13118dca20509b2
BLAKE2b-256 bf13a95b2f533ca978e944d843a61715e91f34a4e760304242462fb22a112262

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60a75234276715f1857cb8ac3c8d51e59954135b96213305c58c0d70af43a817
MD5 e24d7ff0b5e9eeb80de5bdd0019c21fa
BLAKE2b-256 d300bd7cdbadd3d6e7944edb97ba9bfcdecc2f46d386bbe3ceb2df2a9ba16c8c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53847080b6477fbfddf02c645647c56e6abac4b10eb5ae5bd8f944c195988643
MD5 91e1214729803db05b26939abe94464b
BLAKE2b-256 49e802cd911842c0e46a921602949831a0e41b0861308464b81a1de31da6d01b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09264042b6ea1e93c4cc75dea726f543cbd431f215e05e847459890073b24899
MD5 86a6462de9ebf958b494adb02122eeb3
BLAKE2b-256 234953243a682ea2a407eb7b61598a8cc27000fe42e816c630de2b9370a576e2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.19-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.19-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cfd9e3bc3fedd36ec4d6a71d74f002c7c170437f715ff9653fa8714df59c1c1
MD5 78e3c06d3fb274c8bd7f6aa413168374
BLAKE2b-256 92aaeaf083caf7d8d321c3559125535225d6b24a9ada9749c3c4d0375f42cd32

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page