Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie.vision import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 1.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here for EACH target, e.g. [[2,7,8], [2,3]].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 1.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.21-cp312-cp312-win_arm64.whl (721.4 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.21-cp312-cp312-win_amd64.whl (865.4 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.21-cp312-cp312-win32.whl (781.9 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.21-cp312-cp312-musllinux_1_1_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.21-cp312-cp312-musllinux_1_1_i686.whl (5.7 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.21-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.21-cp312-cp312-macosx_11_0_arm64.whl (978.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.21-cp312-cp312-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.21-cp311-cp311-win_arm64.whl (737.0 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.21-cp311-cp311-win_amd64.whl (878.9 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.21-cp311-cp311-win32.whl (800.7 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.21-cp311-cp311-musllinux_1_1_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.21-cp311-cp311-musllinux_1_1_i686.whl (5.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.21-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.21-cp311-cp311-macosx_11_0_arm64.whl (998.0 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.21-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.21-cp310-cp310-win_arm64.whl (733.8 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.21-cp310-cp310-win_amd64.whl (875.1 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.21-cp310-cp310-win32.whl (802.1 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.21-cp310-cp310-musllinux_1_1_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.21-cp310-cp310-musllinux_1_1_i686.whl (5.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.21-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.21-cp310-cp310-macosx_11_0_arm64.whl (997.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.21-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.21-cp39-cp39-win_arm64.whl (736.2 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.21-cp39-cp39-win_amd64.whl (876.4 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.21-cp39-cp39-win32.whl (804.1 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.21-cp39-cp39-musllinux_1_1_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.21-cp39-cp39-musllinux_1_1_i686.whl (5.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.21-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.21-cp39-cp39-macosx_11_0_arm64.whl (998.9 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.21-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.21-cp38-cp38-win_amd64.whl (897.1 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.21-cp38-cp38-win32.whl (817.0 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.21-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.21-cp38-cp38-musllinux_1_1_i686.whl (6.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.21-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.21-cp38-cp38-macosx_11_0_arm64.whl (987.9 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.21-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.21-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 721.4 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 8dc209badb8444daffc0fcaea682c10664282e05adc5f1a494fcd67bb360fb73
MD5 ac197e9d8ba1e98367badee8b68d8449
BLAKE2b-256 e0761efee3529e9b2154b8a3010bc92bd3924238802bfbf7a263d351c3fdf9dc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 865.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 89916acaa01fd117e77657f38c1a5e78c9d0b62d6b517ec9245a33dfad59f81c
MD5 8ca1980e4ade54e679fea7722acc4829
BLAKE2b-256 fee87d42c31f588f9538116a803ea4a704070793362152f943b7888915f02565

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp312-cp312-win32.whl
  • Upload date:
  • Size: 781.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 60ecf1c8e8a9443bc627e2c8aa3309e5e7604eab293fc098b98d0689fd5609a4
MD5 6e02252929b4f674720600b8e44d24cc
BLAKE2b-256 b522b690b718760241fc71cd0b1fc6830ac02f2ebfb8e70bc8059e98709fab53

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c3d67e99a0619db2ac8a5410c836c68e5254e00246b3e262a3a33e313e0f5c44
MD5 43be2076326607ff8f34cdcbfdd36eaf
BLAKE2b-256 b1dc66a297db1bc1ec5b64e3c9c9ac12cc06656b5fc8abd8f3c90113f64b69e9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ced053830c783fdf112d95b1edd7522352e730eb015107e4e140d4ef91e5676b
MD5 8003bef012c2546a71761f8385a6e909
BLAKE2b-256 4c37533cada8ffd2defbc6a73f5e6e645fe41ead79b4b899de4f21d31ecce389

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 139f99b49307b7accc9fd8d50f88ee07a3edb5d33876efd8c0edfd1a5995d1cd
MD5 21e645c1db53e07fbdd5f94d0f88252c
BLAKE2b-256 6995914b00f9af06cc11feec6522d11a7554db3addbfcfef3089e8e2fbad8fcf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 328edd17311acf466e800993a7263efcb63880af2b46c6d0bee9dde8dc749fa5
MD5 c68b3af43996c8cba0eade7e123c9389
BLAKE2b-256 cb98197e184ce73eda74644f3197cd5926f17b5274bcd86188b29f2179f2cb3c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a4572461dcf6ce7169236e4b9919db28098401efebae1b957d886043216e7a8
MD5 63ad62072447ba16fe4e3e22f3be3128
BLAKE2b-256 fd0189197567a5fac70e68fbc36fad82dd41db73bef28f94a31f2b443071afc4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df8e0a3d918e583d27ed32fccdcc2ac7969ca44fa058c8fad43d211752e42617
MD5 3f203bf27f4b8cf9af8cd9629e7a387d
BLAKE2b-256 749b1104e16858bca0a1210cdb11bb399b8bf044ffe02c4e9040d433d04e356f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 737.0 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 9f1d56562f9f762a4d380702e564cca4ecc97e67ccf6e9abd7ba39848685d3df
MD5 7f5120cbbdd1e92d9aa672170b3e7751
BLAKE2b-256 0656b2eb83fdc21a5a6b09e10cee8a6cc11d7452af7d3b1d5a83400b4db254aa

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 878.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b2c22d83b7e5cabefdc09e20ff3dff9a61c3967c6818dd1fd9c49598dbb759e1
MD5 e130bc010b796967844d978fa548f3e1
BLAKE2b-256 cf2859682c0e3e6769a17348abe3164b4eeb050194c4828724d8ef4e7aa4a456

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp311-cp311-win32.whl
  • Upload date:
  • Size: 800.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bb74bfea711b0ff1d0642e695b05b484e4538213feaa38cbac162684a8a7ffc8
MD5 7034c2a3b18635da2183b960aeb2f0ad
BLAKE2b-256 c0951f5bf63c16c9fa9bf3ff576efb082b023d1e6cee1fe0c8b0fe244660316e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b7b3c45f3509f0c63ebb6ce7c8b9e65d8dd54d223d6352194e11c00d0564a1c8
MD5 25d55489bcdc57c332844825984b7ca8
BLAKE2b-256 0f9beb0c553fbe79bf55bbc1ead6aefdcc74f98284429bfe33635b5f85857b99

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9d2e544aeb0d78e8ea4ea8849c85686c9ea6725bcbd632e28cc4e462c2e8fcc0
MD5 bd266bae378548382f4dc141780c6540
BLAKE2b-256 8c949818cc471ff94b134c6cdd7a8f3573dfac2141912517d8bf7f8f20b42948

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 320ba60bbb94053bc7243746e1426cf42a92bb544492a65ce48c96602924b478
MD5 4ce392a470e6a4c417afb87b71a680a2
BLAKE2b-256 66831dbbfe3b5545a0ffe7b4b4b5c5933bb6dabd8b8230520139d7af1203b757

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 110f2e8ea4f73783d5018696968b546a4c9cd5980e9e293360bc03ff03639b6d
MD5 fdb09b42abe8e560ccee3f4f34d69133
BLAKE2b-256 e2621eb134ca08cb4d18ddce8bb7e731771c1fd294449860661f74509c0aa3c4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 724f443449d1be11b8f25fe2c18ed22070cb883a8df6de1c8e018760245ceefb
MD5 0b53f622bf6c5016f6e1a755224f44d0
BLAKE2b-256 54f583302d4c77509049ac1d78ed790b39bbd02c05e7123b43bddd5f08d31597

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d777f86b35916c651ccf867cbef0a3debdd40c4488570c261d896de97dbfe71
MD5 86e04eccfcc3899d5d1bc1e7ea6a068f
BLAKE2b-256 f2f7129a4d3d4b39cdd5be1479c727c7614bcda2b4ad5d3268ae8f8f24932fca

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 733.8 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 849b310642801482e8cd17fad4e0299c2b6704269894814a771ee16cc31116f1
MD5 b322c88587a177128402cbd99815c4bc
BLAKE2b-256 58020161809837dd89890fe91f7f841f26dfccc96b8cf3d1e76e5c1373217a7c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 875.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 41dd5f2378f9c70592b8fc34bccbcc32e3ff16729c9cf88bdc2b907ac9ac6072
MD5 5348fbaaa68cc58a9cd4ff85abe5143a
BLAKE2b-256 def7444e3fd69e2fc29b0bada1f48503e87022c291b2c299cc9e3b4ab398c22d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp310-cp310-win32.whl
  • Upload date:
  • Size: 802.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3252032f0216377b25e973832048404c7b21835e8ccac6269b1a565ff5101644
MD5 64a2f02dda9ceb10042c6595dda20482
BLAKE2b-256 8372ed46c4a8a527d4c557fc53343fe335d27920f960179260e9801414e5b7cb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4b24db0772b1cdf675911eb6e505c5e4af50f27e04c2123e6fd17fbffc041770
MD5 13b42cdaa811b940757f92ae560b0e0f
BLAKE2b-256 e9db3f46991753785091f28c6a5e5db6cc873352fb805086d8a44cd4ceeb618a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d2ab8edb4301c0b752efd55ea585f1d77b14ae5ec6632daf911848cde525e4c0
MD5 c4e40d8c880d5b84496ffe07b980ee17
BLAKE2b-256 807dd472027d1807cda682439a19c8372eb4dd3e2eed9a9f0a85d1406ec0c39e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 802f47d19200b1223e2d6a2affd333a84fd9f915751e11ad5afee8020668962a
MD5 6cebba48ce8014f703a0c26988a89d97
BLAKE2b-256 1f4be38a6bb3688838e290438aa69fda51f2d0dc56d3ab4774322ee355716d45

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76dd4ad9274ad97bf68eb75eb02e5c87014f16ec85cde7a8463cdc274e59d544
MD5 6764d652e95fb22b1d6cad7763820819
BLAKE2b-256 c64a98d8002327343ea1bc8ead1624d1688d311036c406cf792c5d378e492fef

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5105983bb068fe349b09dcc119570160dd50e71f09ea2ee4e932d1e647323889
MD5 2dc1d0bf184ea0e22b8b19491e33cad3
BLAKE2b-256 d47910f1ab0e7feb5e5bed6bbe0cc77d0ea4ec5d56f65bc4fcd77b222c2e9691

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dae9657b93c4caf9b8d4309ddddd6b0bc732076535c4ae6f21be7d918f1ca07b
MD5 cfe453fd5f99af11e254879198040450
BLAKE2b-256 6c473e1fc575f397d5f62b6c2a15b5b24ac6c7d0ba37fed31e27e034866e25d3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 736.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 ea3e7ba1b48544e5d32920f4c17e4792d44b66e54d0891bf8e8eaf225da4b900
MD5 e209305a17f854d570605cd7b8745939
BLAKE2b-256 154850c05ac47a2acdc27260df7361902b98982ab57ebf251b6adba695e4d89a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 876.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a868fc8a58fbb527d33284aad384e4b2195fa6e77dc43fe31cddb004401026c1
MD5 f849a9105a791fd3f4a601c53cd4d50a
BLAKE2b-256 010db549557a47399ceb0560d98c9869753edaba65e5f19d54229cdc800eb46a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp39-cp39-win32.whl
  • Upload date:
  • Size: 804.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ca96761974f3ffacfb76821367635a3792f1232695aa46206c42f880b8ce23c0
MD5 4f681b4f1c3b0a5656de6589e73a3122
BLAKE2b-256 ee985dd0b72bde6fb7e2682ceea6c37783f96e5fccbb8ff2a39306df8d1c78eb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 59a3069bf21681ac4ccbda7094feb90b7a40e42144b118922f611406579b767c
MD5 b3b85ff9cebc2110fde9b24c80175150
BLAKE2b-256 b20fbefb14bbff7163dd61b2e20a79c4df684cfe443eb9adcb0983cf48abe2bb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c9f9ddaa4da03bd3868e6c77427a6f701d2ff2f7529e28d82ef85c81fea895d8
MD5 10c9a88f570dd6dba9515d6779e4757c
BLAKE2b-256 3cc2210a15ad88a7bae3dc9651395f9c7dce9112aedc55afcacfac20ac772b5e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d104c706506918701e0fe5608ca4ef2f32d4740b9e1d1800bf2f9ceffd60b423
MD5 42c74f199f86eb6ca44a9062309f8aa1
BLAKE2b-256 6d8fe15c52ee5bf2abcf67244a047900b8a23cc16fafdba4dce84bdea70f9c3b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f3717b253d5b79c3d7aba5240a7b88924b90e20844ace7d430b7790d18e808fb
MD5 92f291cf592a8aef224c98cecf943dab
BLAKE2b-256 cf37daa851434de24956090d43c7f200835d98b75f85a2f8f9b811851bd62b40

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ebd65e31ef609e6cd46c04bdd9969b3a7d98529c9073c139bdfe7e834d5725e
MD5 a5c25a9b2d1eaef34427c363fc0c952c
BLAKE2b-256 d6f72e4280f00f5b8cf7d31987ef8e93b1a385bf5d8657714fc1ff52bb3b9bde

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd23179b75bf07a524593646a531bf2fcfac2fab4a84cae700c959f7cf54b01c
MD5 5f84c08bb03678f8f02314d742387c1a
BLAKE2b-256 a6acf883af43123d3de2f3f92aeb184bbe1da1bdf6e78c10b2041f745274b282

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 897.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2c06faa352c7ddd050becee8732dbf2d0eb5f09feaaa7fa2c4281b67ca85895e
MD5 b516c4061fc62b888da79867fc9f4c66
BLAKE2b-256 62443c14b80a902525fc243563146951f061c1bbd56edeb8c900be3b78c0a037

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.21-cp38-cp38-win32.whl
  • Upload date:
  • Size: 817.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5336e1aa9acaaaebf73fbdb1147993266b3f4f372188b1a040db64dde26a562d
MD5 f8210808d04efa6c2958163cbe8fe335
BLAKE2b-256 dd32761e3186a6d06d49857c6460ed7aa5ead5be5e56f89dfc1b9c0d7b59235c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe3f60debf8415d34641ceb8adf1481a7ce98f72eb671f82364d1a0c874939c4
MD5 ead2432e9bafc364eaa78f60fabdf49a
BLAKE2b-256 0da6d856b671cf153ee965bf0ac9ff38428f8527d1e993bba3cd96715fb88a9e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e38a8488142ed1782dcaa3e22ff72f2231269050044e986d4b7b532c7ef4f32d
MD5 8bea927ce4540640e10a7aa2af26a13c
BLAKE2b-256 8b36513c9c3ce757cbae08fc0eed47e72d2b739d81d844781a5690eb46ffeafd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f077b9ff46f33f3267ae775b2095e13414dc355d8f711d9e0ebe07d6954326b
MD5 1f0b039ad231f5501e67fb1f54813cf9
BLAKE2b-256 f04d09139f4b20ae6f4749ae64782ef1e5773422f13424992fcff54bbbbe4b2a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c80f8951ade4918518784c015f1fc2baddc884ab89c5bb462229ad0657ff185
MD5 f7864791415e0145ba968390830d0d8b
BLAKE2b-256 61d2927ae1ec9f52eff550c1cf0eac1323813bebc1df2f2416ed83ef816fedb6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46ee1581c7d82812bffbebcfa37c8b0359264329d347f272f285070a8a833155
MD5 36b35b79b5007fcb093e24c88ca6775b
BLAKE2b-256 d891c9c8ba26dc728e61ca46d02ad93f9bbdee64ebbd0f59afe62aa39ca3afb5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.21-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.21-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31a4819dcd7a6b26496d43bceafba573b04b7d5034d28db2d12ce84faf75a6b7
MD5 1deb537befd8b6dd72dfe7cae3ad63b2
BLAKE2b-256 1729fec814ca3c8f54455374d0028ee99c9305d244489dce33098d74afef028f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page