Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie.vision import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 1.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here for EACH target, e.g. [[2,7,8], [2,3]].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 1.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.22-cp312-cp312-win_arm64.whl (739.5 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.22-cp312-cp312-win_amd64.whl (888.8 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.22-cp312-cp312-win32.whl (801.6 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.22-cp312-cp312-musllinux_1_1_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.22-cp312-cp312-musllinux_1_1_i686.whl (5.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.22-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.22-cp312-cp312-macosx_11_0_arm64.whl (996.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.22-cp312-cp312-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.22-cp311-cp311-win_arm64.whl (753.8 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.22-cp311-cp311-win_amd64.whl (901.7 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.22-cp311-cp311-win32.whl (818.9 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.22-cp311-cp311-musllinux_1_1_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.22-cp311-cp311-musllinux_1_1_i686.whl (5.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.22-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.22-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.22-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.22-cp310-cp310-win_arm64.whl (750.4 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.22-cp310-cp310-win_amd64.whl (897.6 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.22-cp310-cp310-win32.whl (820.1 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.22-cp310-cp310-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.22-cp310-cp310-musllinux_1_1_i686.whl (5.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.22-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.22-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.22-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.22-cp39-cp39-win_arm64.whl (752.6 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.22-cp39-cp39-win_amd64.whl (899.0 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.22-cp39-cp39-win32.whl (822.0 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.22-cp39-cp39-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.22-cp39-cp39-musllinux_1_1_i686.whl (5.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.22-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.22-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.22-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.22-cp38-cp38-win_amd64.whl (919.6 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.22-cp38-cp38-win32.whl (835.0 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.22-cp38-cp38-musllinux_1_1_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.22-cp38-cp38-musllinux_1_1_i686.whl (6.3 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.22-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.22-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.22-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.22-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 739.5 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 d9a7773a061dee5c9ff0d6f4b3b8d9049d2ffb418d2112ae420a378c96bae674
MD5 257a030664941b01f8d71d1ab90b82bd
BLAKE2b-256 10c32c53f7e9af21ca90f1f878eb32bbaf8f185abdcf5127dc38964bb7d37dc0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 888.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d8cf2af9cdb2d802b8256656a16564980a8a79ca1d638cc87d88a78700640e8a
MD5 56d804684194b5e262054fb0f2aa4040
BLAKE2b-256 d8c029d2b5c06d26d620eaf952ee56a4456ad01f27447be6d082cf5fd4362207

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp312-cp312-win32.whl
  • Upload date:
  • Size: 801.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 8bfc045355fed4cc4effc77a9a6642537371acbb0b88c444046412a273368475
MD5 6e1a35d33df932f6015d767b3f3fd068
BLAKE2b-256 c3aa5538bf2583ec78ea9959969b9091ce44927c74606f39369f95981cc2bc1e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 45476f3ac0ce5008ada1789435f099d0bdfe9e70c6012fe35f3b00cb707dcc44
MD5 5fb35c01123e632f060be3a17fa62dba
BLAKE2b-256 4ab08c16eb77d095bd2b0b495b2fe5fc50483af4fd8a25b649a5fa9f6f950bea

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 228a48c01c715219ee14751b49a6ae3e44323f060795e053aca67da7797f3220
MD5 1ff315bad36892bff2526bc21194e7cb
BLAKE2b-256 23c0c1bc84c3f9c42ebd284161afe75ec5d8628e7501321b4a18f6c4641393bb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 751f1d8a1b0b77ac1204b561b8f28d31917977586b5144dbf8c04f3e73419b4a
MD5 6b564cf01762771c57e9613080c00efd
BLAKE2b-256 55de68f48a45b6c5112d66918c63cf721d5aaea3ba6f8608b21a8636bf731e5a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 572f08e75deac11d10931d851c93385118e42c30861625691e2314f4c4706c24
MD5 b1dfa323de782b1bb638722c0f7e875a
BLAKE2b-256 b6847965ae5883a555c241903a1661d94f55a915265fccd4b7ae931eac07c6dd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0eccd89a28dadd282bf959aa569377617a8e0a809c0fe40b2f5c173b32a24e3
MD5 52d3b883c1cad0c17313c34f51575332
BLAKE2b-256 164b1ca7eca6ad419a5d754660062a3b4ada05277d6302fa7a615016624b4e82

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8397ccfbd84ac95f853d8ad06fa4f81d623ef93d6c8bebb21e87378ece346284
MD5 ffdd62425508ff30aa8fa766eeef6a13
BLAKE2b-256 8c1b2baaeaa32c39c26bcf8107f8ad750da5137cb6f6c70c9b944a135305aaa6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 753.8 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 63a05dc903dabe0ddf15be7bcb47fc802601cbbca754ad6431e7468f1d4c1725
MD5 8955e29f6c1f23c448c7a5c9b67fd3a4
BLAKE2b-256 50c6632da77b0e27d4b946923b957ed73173d0700c32e23707c2119f509228a1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 901.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 73bd1fb2b1191a12760c11dc8eb00fe39285abadac751ea3b132d160c5a107dc
MD5 c5a7da713e2f6dd03f4c9c38cea699b4
BLAKE2b-256 1927bbca285c11e6f4f3b34ad689a068776bdfabc4ea9c8b3e11ffca985d7ffc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp311-cp311-win32.whl
  • Upload date:
  • Size: 818.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1b4def693d2504ee395da5e1eebed8eb117ac819f36f61204ef4a46c07decc17
MD5 c29aef0a405d565760918af80fb8e0ec
BLAKE2b-256 ce6279453eb49a17f18585fdb2942ad569097d97b97894a56f3f4448c899e1b2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8ec09e099091815f9e6939fb5c18d172f865223799d044250361138edaac2982
MD5 61a06821ed50a58976f3b615f609895f
BLAKE2b-256 bcc2e2a7a7f5e2e90cc924e76f3f60d660562d7b4e4f86889397d638d2cf438e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cd382d7a49e27094db0697dc6e63d0246065e9b14b6a3cc032ff754f16a0f25e
MD5 fbb9fd410888a4ad11807210c49f1ba5
BLAKE2b-256 eed9f66a6c8b49f4c65bd6eacd5e10b76e783907e2f24d7b023d286a551135ca

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71e9e7538a7852fc19e03b43a177ed340240a3c18118ef2068a1f5881ffb11c3
MD5 7a1bcd8b5295a0a8d8bf2f646a87e3e6
BLAKE2b-256 aa151641aac9c38f0fdc1866962cd2895a0a825a8bbdae6e34b53bed3ebe8f24

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f259176ccb28fdbe4187c027b10854fbdac7363bba4b01e03575cc0609e568cb
MD5 bd704a0592ff9cf117df2787bcb6c5d3
BLAKE2b-256 ff4463dc3041df7924907b2388ef92146e32d02ed44248d151908a1762c66f2a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eda9b731a5b6f871dbad749e9e8f0c3344783258b0f26960fd5619600e00e2ec
MD5 d3bb9b71625a8d948446b8eafa272760
BLAKE2b-256 6661c7e6452534deca743846c5b59c4199c39b109d52fa564f56b00f66f7219a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99a93b10fed3f00e0b4d18388faf9d382e2879a3a7bfc45c3a6f3e2a20011cd2
MD5 b28ccac51701985ff3c08d1bb1f8491a
BLAKE2b-256 fa86f5dbe4d2790fb6be187b50422641d0ff670e1a2bc5bbbfe8b477ba51eadd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 750.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 7342d1fd1ba10a7781815a177c69f6759beffbbc34983dc3b32a621a21bef5b1
MD5 1317ca0fe017a77c0ba6ce6179fc864c
BLAKE2b-256 df039e37d07a83cc60a4b5418194f1021d3f0edcb8f74e104d53af26c95ff71a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 897.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 62202201d488466179d7587ed1331cbe23f45275b6b69abe79c19bcba4fd2a11
MD5 60a61eeb651d131b06f661ed39c2cd11
BLAKE2b-256 e28d542884d0302ddeb0b8480b61ae29b31b2dd6dcbc50f8aefa24c6d714ed59

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp310-cp310-win32.whl
  • Upload date:
  • Size: 820.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c2271a91e6f5e59306f03b4192a1b5aa973042507cca7adaf45499fa571ceafb
MD5 3693b8e5f37afb9893894633c2baaf90
BLAKE2b-256 a3710439ab9e51a570e9d102687ee4e2d6edbfa154bd0742971d002bd46d2615

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7ad194920fd7eadc8b4f306a63f2c3e047c4e7d8a961bf9bb0ae8e9527ccf2c
MD5 2b90a2997ad6d4a4297152b73e51adc5
BLAKE2b-256 2f61baf721008329c0da2c847f0544a31986903eeef21fddf88f2fe242027606

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5025942175d5026b1f84ee5973b56a2aeff7ee82ae821839903016f25cd03d81
MD5 f1f10cf574a0821f47253c0b0d8a8aee
BLAKE2b-256 452d37261c936c19bd0ce7d0e22a1ba285685a41183be93454048a79c4d2bc21

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6cb3cde2430fbeb416ee48efb925d8cf21ee538e489183f0ad9219479b5a0a98
MD5 ed9796d0d57df067efaef34481a71b71
BLAKE2b-256 fb438b81a76be17c88866954b117ac8ab667c7e60b0456d07483de7891a7a9a1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c7f09dc48a1017ddf59387fff28517d035d81d08321ae458ff53b013665852a
MD5 7fc673726a9281728c95dbf4fe0eccb7
BLAKE2b-256 bfd03517c312ce41f43b29a773079778bc0f0289e2c2c8afae87d824e3787ab6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de5cdd026cbdc247c3e29070f25cfd0606a77bcd939fb1d24c49acbd80710788
MD5 7b3e82480d1381e5f9e551e974a9895e
BLAKE2b-256 8d9a73a9366f253d8adefc007c8cc2727d1b1ed55ee7f0c4a2b47ddc26e62145

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ab4162cb2e5108a922a18e25fb3ad0dfa10e01c20841874703f77bd390bf308
MD5 c7e280060aad11566690a63247f58403
BLAKE2b-256 d37c7fded3e2c32428549c3e91e85aaaf4d3f4145f806e372f2d4be72c18f340

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 ecb097050d53f2bcf9f5a9ecd8a1d04b0b5b5471b777238e31e3caf43c7c07da
MD5 b4294c3d9523e85b9068b87b72b73df1
BLAKE2b-256 ea024047b9681d2fb378450aaa256a96e6d1db56e38f06db9092c42d1f8b7b93

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 899.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ee89f0f345bec2c1bb96571a506784f8977c1f7103096302bed317f1916eb37b
MD5 a3db302f5dadb52f727347f29d25a759
BLAKE2b-256 003f9f078b53d0460131c857f26e5bd07ea83b1ad18fe65b0732793fc6e2970f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp39-cp39-win32.whl
  • Upload date:
  • Size: 822.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7f231e699e1322c5bf83e4f55e96fb4e858d0beb0c0b4acee29c8b085c19d9cf
MD5 c0e01439d3a316bf50169896a72806bc
BLAKE2b-256 9df6f246f53b05078a265589f4ec742cd67242d10843fa44b2da98a43d9ad11e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 310edb3bc58147e918bd096cacb4cf1a20a4ecadd07137ebbcef1fa65a7553a7
MD5 dccde1d463c9e5f9332ad716667b8501
BLAKE2b-256 08bc95fc19c5af8ff32474018c1b194b5030f52dccb94331cfaa0764a9b768de

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 aa0bb4d8a8f0c32ac0da4d265d4c5aa7e47f666e44ad4ee738ef368613c488aa
MD5 4ba6af0dcd7ddd18ba9cce5793956d6e
BLAKE2b-256 4d9b61291b4942e12512e1fe5b83469e603d94b31e7d4573005e4d42d1bfde97

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ce4d57327f79083b93604a0409b9abfd5f85937b2a4089b043561150cfe429c
MD5 c76fed95a228e68286fe755e4e632832
BLAKE2b-256 f879adafc2d12fa993ce33cc64f52c104cff1242853033ba24629822c8c565d1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 13d2123def085773ba3b49ebb2739b8cc432cd75de33d33eed86a7a33a97f4af
MD5 e74fc6b094919f3b6db4ee573ffb5e69
BLAKE2b-256 d707f3c79cbc0fbdcc5edda839d96c860ae79886089269dd754bfc1d4d8f4892

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8f31f847dc717a466ae90150dcf4fba28b6ad48b5fe9441580bf4ce27a75f3c7
MD5 1f95c87c55acbcf0ecba1b6671e3dca7
BLAKE2b-256 a33c7a2c47f960868af38b524d05c5c9de8de2454c4b831403de3d3d54c1ffcd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cfcfd8464c4d1ed2ac3e586dc276fdcbef442190bfbe35add68d22d315a4c34e
MD5 8f006d6461fe0bc8fbfd3891c665a148
BLAKE2b-256 8cba876a01079f8904dcbf7dfd1b1c102463cf0fafce0f70abefb2ae4ecfa666

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 919.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f1cd42c19431a2b8b34a788b60763af4f364f10d318196192fe873bce5d13398
MD5 05f5bb47b16fb4571bb0adfda68cadfd
BLAKE2b-256 8caeeb8453857203ac8df602b58ea510f29f32c3b33ea0615ace2ee14baa5df7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.22-cp38-cp38-win32.whl
  • Upload date:
  • Size: 835.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7caf9e42abdd8a3948748b0c331c6d1ead1bc7054fe6b9f8b2f0ba229751b945
MD5 884ccf652a6f423e9437f26bf4b42108
BLAKE2b-256 8d30301ca1643d4f81909fd57c51f4591408ca9ca2b7b0e57efdc7dd4c70bde9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88719ff8619789b2064db257ecf4abb11f687329bfd61b91612cf1afccc059e1
MD5 50e53074e96a605119f9833c63b62489
BLAKE2b-256 09b3d160c2c356d8d571e5719d0cabe5d6541f19ade67c042698ec283ba813da

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ec42df396811485b3168bf79acdf6076f3a6188491727c4cb8e980e3761e76c2
MD5 7da36d083b7c1d7dc421f521a88ca57a
BLAKE2b-256 27d650009cd9e9974bcab4cb608454e56d6692f43356c16efb12714804c7de0e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e10387982c87ffd96011f254e6a725cbf7eb1fd082c76881b26fe42ef1990f27
MD5 ca6cbc4cf26a2048761fc2b13e6ad261
BLAKE2b-256 469a8e33f07df3b53435e5ca94325eba77ee13a6ace906d0f0fb70e606aa5717

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a103475dcf5199c31b03b5138aba0445e72e433201f2cc494ac04e3ad6aa489b
MD5 5ddfe9f377dca541dec8fa7cc23d8c85
BLAKE2b-256 722ef067a3f9257ae3dba221f1fb6ddc483c86b7ffe64c25e4bbb817dcf025ec

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3dcb46321a781c7802eb9d618819e88c123ccbab8c30a29ce5b0bbbfbcca94b6
MD5 d0dea7848f13bd83dae654d11668ed97
BLAKE2b-256 71c4d41c63df8f7f2a3029fd2a66486648d04a81f8655ec28080cc10a5f7c914

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.22-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.22-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ceff0b09425b1cdc8b43a202cc560a6098e7e09f0b74b84a219bb7e9b15f6875
MD5 d1e733fa9043b894c955ab379915479f
BLAKE2b-256 07639c6758cabebcea53ea69cb9d7fb2e939ac581fa46f8cbc80ebfaf3e9cef2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page