Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Get started!

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

config = {"leap_api_key": "YOUR_API_KEY"}

results_df, results_dict = engine.generate(project_name="leap!", model=model, class_list=class_list, config = config, target_classes=[1], preprocessing=preprocessing_fn)

We provide easy access to all image classification torchvision models via leap_ie.models.get_model(torchvision.[name of model]). We can also automatically pull image classification models from huggingface - just use the model id: get_model('nateraw/vit-age-classifier')

Usage

Using the interpretability engine with your own models is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

from leap_ie.vision import engine

df_results, dict_results = engine.generate(
    project_name="interpretability",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config={"leap_api_key": "YOUR_LEAP_API_KEY"},
)

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For most models this will work out of the box, but if your model returns something else (e.g. a dictionary, or probabilities) you might have to edit it, or add a wrapper before passing it to engine.generate().

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        x = self.model(x)
        return x["logits"]

model = ModelWrapper(your_model)

Results

The generate function returns a pandas dataframe and a dictionary of numpy arrays. If you're in a jupyter notebook, you can view these dataframe inline using engine.display_df(df_results), but for the best experience we recommend you head to the leap app, or log directly to your weights and biases dashboard.

For more information about the data we return, see prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

Supported Frameworks

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch.

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects. To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
}
df_results, dict_results = engine.generate(
    project_name="your_wandb_project_name",
    model=your_model,
    class_list=["hotdog", "not_hotdog"],
    config=config,
)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie.vision import engine
from leap_ie.vision.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=target_classes,
    preprocessing=preprocessing_fn,
    samples=None,
    device=None,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie.vision import engine
from leap_ie.vision.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
preprocessing_fn, model, class_list = get_model("torchvision.resnet18")

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
df_results, dict_results = engine.generate(
    project_name="resnet18",
    model=model,
    class_list=class_list,
    config=config,
    target_classes=None,
    preprocessing=preprocessing_fn,
    samples=image,
    mode="pt",
)

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_df(df_results)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.vision.engine.generate(
    project_name,
    model,
    class_list,
    config,
    target_classes=None,
    preprocessing=None,
    samples=None,
    device=None,
    mode="pt",
)
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 predicted classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing a microscope. Best practice is to start with zero, and gradually increase.

    • Default: 0
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1500

Here are all of the config options currently available:

config = {
    alpha_mask: bool = False
    alpha_only: bool = False
    alpha_weight: int = 1
    baseline_init: int = 0
    diversity_weight: int = 0
    find_lr_steps: int = 500
    hf_weight: int = 0
    input_dim: tuple = [3, 224, 224]
    isolate_classes: list = None
    isolation: bool = True
    isolation_hf_weight: int = 1
    isolation_lr: float = 0.05
    log_freq: int = 100
    lr: float = 0.05
    max_isolate_classes: int = 3
    max_lr: float = 1.0
    max_steps: int = 1500
    min_lr: float = 0.0001
    mode: str = "pt"
    num_lr_windows: int = 50
    project_name: str
    samples: list = None
    seed: int = 0
    stop_lr_early: bool = True
    transform: str = "xl"
    use_alpha: bool = False
    use_baseline: bool = False
    use_hipe: bool = False
    }
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • find_lr_steps (int): How many steps to tune the learning rate over at the start of the generation process. We do this automatically for you, but if you want to tune the learning rate manually, set this to zero and provide a learning rate with lr.

    • Default: 500
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here for EACH target, e.g. [[2,7,8], [2,3]].

    • Default: None
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. We find this for you automatically between max_lr and min_lr, but if you would like to tune it manually, set find_lr_steps to zero and provide it here.

    • Default: 0.05
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_lr (float): Maximum learning rate for learning rate finder.

  • Default: 1.0

  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • min_lr (float): Minimum learning rate for learning rate finder.

  • Default: 0.0001

  • seed (int): Random seed for initialisation.

    • Default: 0
  • transform (str): Random affine transformation to guard against adversarial noise. You can also experiment with the following options: ['s', 'm', 'l', 'xl']. You can also set this to None and provide your own transformation in `engine.generate(preprocessing=your transformation).

    • Default: xl
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: False
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. On a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.23-cp312-cp312-win_arm64.whl (772.2 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.23-cp312-cp312-win_amd64.whl (929.8 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.23-cp312-cp312-win32.whl (835.8 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.23-cp312-cp312-musllinux_1_1_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.23-cp312-cp312-musllinux_1_1_i686.whl (6.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.23-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (6.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.23-cp312-cp312-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

leap_ie-0.0.23-cp312-cp312-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.23-cp311-cp311-win_arm64.whl (786.5 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.23-cp311-cp311-win_amd64.whl (941.4 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.23-cp311-cp311-win32.whl (852.7 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.23-cp311-cp311-musllinux_1_1_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.23-cp311-cp311-musllinux_1_1_i686.whl (6.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.23-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.23-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

leap_ie-0.0.23-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.23-cp310-cp310-win_arm64.whl (783.4 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.23-cp310-cp310-win_amd64.whl (939.7 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.23-cp310-cp310-win32.whl (856.1 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.23-cp310-cp310-musllinux_1_1_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.23-cp310-cp310-musllinux_1_1_i686.whl (5.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.23-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.23-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

leap_ie-0.0.23-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.23-cp39-cp39-win_arm64.whl (785.1 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.23-cp39-cp39-win_amd64.whl (940.0 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.23-cp39-cp39-win32.whl (857.1 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.23-cp39-cp39-musllinux_1_1_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.23-cp39-cp39-musllinux_1_1_i686.whl (5.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.23-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.23-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

leap_ie-0.0.23-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.23-cp38-cp38-win_amd64.whl (959.7 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.23-cp38-cp38-win32.whl (868.5 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.23-cp38-cp38-musllinux_1_1_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.23-cp38-cp38-musllinux_1_1_i686.whl (6.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.23-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.23-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

leap_ie-0.0.23-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.23-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 772.2 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 fe89bbc44a2460001775f1ea7d93a945e294d9a084e959274c098344d596b43a
MD5 d6571cc49a06617acd528ef52f4c677c
BLAKE2b-256 18f5472b1c092020de04681fc55fccc6ce46fe3683d1fa5c721910c0a3f42792

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 929.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b1ec21182fa63f0168cb27ee726e183d03200097368e13788052ad66879a89bb
MD5 aa81c8db760fbf65486edf966a44ce58
BLAKE2b-256 e6c05f4f5b44b9388149e5bf29c0e201b130e26bce31b345ff066e63157d9efb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp312-cp312-win32.whl
  • Upload date:
  • Size: 835.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7d054baad44af5fca96e7d9de59c2fdf98e0503325de9a74d9dfbc68179c2bcd
MD5 4f4517b469f7be84297e62834f04d635
BLAKE2b-256 40955080248e5a8777a5b54d822cec1392bbe76c1c6417863a50292c1cee5fa5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1820566d2df45c4d40529b49a0c8f1423a296aadf217d223cd2a8f683da3355c
MD5 39b8233648f7f11bf14c853b9363e7ec
BLAKE2b-256 c52283cc3645b63c4f977a4e60937a8dc301fd8a6bfa35721f9dd4211c3ec809

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f7d353b673bc4f2e77fa8a2978d2c486dd85a0ed3be83082f810078f750b2cb4
MD5 20746d7414c871f85da85ef1023f329b
BLAKE2b-256 41347b6e9ae801a1d14742f80336cd17986f770da01b513f4eb7f2c6d5ceed6a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65e974cde3f12eeac4703732fa731ec88e26523e447560cbfb00e35e89c2393f
MD5 8846756f07132af90cc2696696956f75
BLAKE2b-256 0f69c139b128e15e4434dfe21e210de7395008a924953bb8829c416c03283406

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a9d58476a0b91c6c231b6b461f9a6f1aeee1ab35209f934a1af124d6751b201b
MD5 01975c82cab4497ed674093be9befece
BLAKE2b-256 8a99569c807d7cb5fe2f192d4623632010b84bbbfd603acac98a2c96715d2c55

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54bd09ca34e42644bed74d2d19ea415429f69b1efceeacf49f3460a51fc6c57e
MD5 635fc7e83cc7e753101ce234c6df9a2b
BLAKE2b-256 da53eb66ad955c9da343c41d429a1f5963bebb226e3d784ba8d2058a2f8b89ed

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0a86d33eed33b05dcfead48a8291b745bdfd7face11088c819288a6db48c7ce
MD5 bc350de51441930ab38e83c41c63fae9
BLAKE2b-256 65f8f872378d0b438a8813aeb0a82c3fcbd02ac15a7522ec5385964b5c95ced9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 786.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 6d1aad54226d5502adb6bf2ec65e5c97ae0c2c11805f16fc7f9d5bcdc4d5e072
MD5 ac0d439d6dbe01d4f4a1d50d04d12395
BLAKE2b-256 c2f3c6bd5be8fce1413afe260f20d3c6644f4527b73b21c75b0bcf0ceba53152

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 941.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9b3c2c92a1179e2c50aa10a8f77aab813ac6a7e362b185fe740c4d14d1ab5202
MD5 dead91eb5fbed2f88fcae56abbde3ef4
BLAKE2b-256 181abbc96e92d8806c9508d93ec8c50fb5ec3086c37eaa9510475737345f5daf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp311-cp311-win32.whl
  • Upload date:
  • Size: 852.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9ace95f8705348e3aef4182256645d7d6fa594c37b682a209c53c840b831e896
MD5 e19a96992a856e1b5c23fb7bff2a9fcb
BLAKE2b-256 4504d3dc7d2dbc61746e1fa15b83086880ffccce3f1d92d8526afaccee19bddb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4ec6baa1aa3ddde06a0d015f017e83cf75444a0fec1d7cb8fc8c28f78696538d
MD5 b8201518aba5f4a959d1adec855349ba
BLAKE2b-256 e9edda69511b502ef7e3907952f89cf4d16ab2e7211944c61a00b2c3a50eeca3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 522cca154d7e6eb29d1bf12267112c4b291d75ba35ba85891b759b7f90aece17
MD5 cb09e369da17fc3dc5f245605889a366
BLAKE2b-256 d635eaace6d3272693cda99985a67ed30d9982dfa716e1bafe66be07760e975f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 928dfae3744bbaf1180007cd61378d075994d2fa2d1bfa36d985da8056fbd0e4
MD5 b63e0d0e9c529fbac3ac9686d5dc0ab8
BLAKE2b-256 3c992a12d19fea22167121014f324238910f0df487a44b9f8106e41968fa332e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 83c2f64ead403653626ca4da1c93180ef9d8f4d342027b08206e22bf154e0564
MD5 3a09e7645ef7ed0576004d61f4b1e85b
BLAKE2b-256 7e064f1f308dac390b86e9eced734569090969fa4b8fee1c3bee4e5d4e59f2ed

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 492b20655123ee38526dbf1e12d7618c18cba5af7b084fceaad39d4739971b4a
MD5 aaa5d4d38e1669dec24e35863243b617
BLAKE2b-256 431d62164ab6acb6af1794dcc734e6f84c8b48087b1570282ac3d8d6fd1100ea

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e3a4ca71f903891ca6edd9936c4ed25d364b09015502e9385def7577f51e10f
MD5 cbe102fee21fe59fe16237c5ffc24d75
BLAKE2b-256 fb169a56efcc4cb9a6aacd80a4430ae078eb443f7dd0e62e15fa88d400bf6b1b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 783.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 4705891186d71ad0794b2be2d1b9268a0956152e005f5368372f45a72ec0e155
MD5 bf3782845739d6b83fd7c2eee4749c3c
BLAKE2b-256 4c29a385b0aaae77ef2589763a4796424f9936036ba77f5bf8704175171133be

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 939.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1f5868559efcf15ff66b63f916acfeb165efa63151f48d62a299cb2cbd6fa75b
MD5 442f7b2fdc530f0269c35df6d5277f88
BLAKE2b-256 e55019a1fefee56728d0aa7ec16b0b993d8aaccb1df9fac5cc93d1218d0f8783

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp310-cp310-win32.whl
  • Upload date:
  • Size: 856.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3d6ff4bfd06fe9ffc81d57e9c6ef1628343851de2de6cf661b6df1cc1136bded
MD5 5059231b75d59dc4cfe48443f5d9ee39
BLAKE2b-256 1561468876d6b98ce99f6b249380aa0727d36419acda069461636d5d1a40c686

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 38631ea13b4d3eaf555a320d047977106379f398237cc8f36e5ce1b8627fe555
MD5 f236399165851da91219be332c7185ed
BLAKE2b-256 24fa04ecf9a5446bd6256ba73471179d09bce451eeaa22c7f651253d2b1261ca

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0a5833fe5c77a32f73fe994acfcfb80886d57cda067db8425b82d5dd5e24b2b9
MD5 098cedec6b47ac49ab3f135080dd4b34
BLAKE2b-256 dc9577ba76b5b0b25c8b04152bf5a383a84184a0c9846853f7406d80e93bee6f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b9b420b14291dcff6c9f419207b5695d4f25773a2a18e583c978fe439c73ccf
MD5 8f885680090a835b17d2b0272852bf61
BLAKE2b-256 cde625225d274823666fd8b10a81d59e7bdeb09caa735bac704f048fd8767de1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca21b6a55beeb2ecee329c55d61587df3f53273de053766b2241324fb9c0622e
MD5 3c45f605c3d07048a63a38b66608736c
BLAKE2b-256 f034b500b66589bb3332b70ddc970b93df4ab734519827369e44d7338bc5ed33

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01123cf41bb12bf69ae502d290514133aa6b3cb75adbdc3b9be59c1a88dec381
MD5 74f3ceb459d1e60ca55e91dd9d38ea64
BLAKE2b-256 37895b070999f6e72add899d4c7b2038bd2437d48a8c9120134d1ccfddc1f8ab

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8b41a6bdc5bc81fda8da6f3b157a32937cf0249f8a89724236a1f86bbc24be5
MD5 42eab6d35d7d2de5ab2b088d48574fb6
BLAKE2b-256 5d14a6d6e6e5220d49c8c81e370b2686562fd2f2090a1c60daa87aef191849e7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 785.1 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 45c23ed7c4acf37f68d7074f3bd771463f056e0efcf33dc652800ea92ddad9fd
MD5 7054253a7b75e664ff4066cb1207298c
BLAKE2b-256 cc335dbcbaabb9a9e72ce6dd90563ae03777c5e5394e8be55d83edd784bb33bc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 940.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b475067066fa0fac4b48c5d8564b1e3f215d87162b55997ec3cdf3ce053449e9
MD5 5c90919db5d1bd0d573c541a4dcf5d57
BLAKE2b-256 d4e86f0d9b5b6f73761d74b4bd0b7f328000b9364fcd4e7edf2872bf0c93048f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp39-cp39-win32.whl
  • Upload date:
  • Size: 857.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 22fa6ec2ced8d379cbf3265c13433ce6a4315c4f733f14d6c64fc90619734c6d
MD5 e6a3dfc50b96fae6fa8166c30e749597
BLAKE2b-256 2ffba478b0d8295cac4a46e1c8c112a30683304460b31c138d73a55bbdb4adff

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1b824efebfa98d3f281fa4e3a6ed2a67be2c541885764ecb8cfb0e92f8a3449d
MD5 0ea1fd5e9164ab09f066edd5faed2203
BLAKE2b-256 4989348696bbc71fe490f25c5f6bd6fe9df8fa1afe74cd39bdf5da0b976a4cf4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 75197ce34adac8c5899421dd603501af86ee2d275d2340eb1ad8b3ff645d6317
MD5 d8ec17b598e1069599f9a2a3e8e7e129
BLAKE2b-256 10764f65076be0f5b57cfd1f7a6ae4837efae57b19aacde475f1ec294b5312c7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abf63b20767aa6604eea9b076f1aa4bda762b1f3d0e9b1de21fe29af83ec1c18
MD5 2135668802cfdc1d645d919072c992e4
BLAKE2b-256 aa859e519f51f15912a765f3bb687518ecd920e2e5ba108123dded2cc105afb4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6ed5cc444f6ce7601e9954e361576901f1feb7118f087c8ff873857abb81fcd
MD5 56fdfb138a224d577f9450c43b53365f
BLAKE2b-256 246b3ff723f0502599a750aa9a4ad172d863f09b26645e337b2fd9859fcb7258

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46fe346639a454be8b31ebf2e696d569aa21874b613b8c665fd76917b64334f3
MD5 11106b55cf8214f903b8f01f4e1f01cb
BLAKE2b-256 98b506b17985d52b052eb2a28187c89befdbab72e007d04a48baf95e4fbd9b87

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e5f295688ec8a3436224451d0144c9758ddd171541c5e961d1c68c8f16a228b
MD5 320554da23ef7cfc0f0ae8dbfbcb8333
BLAKE2b-256 76e055f2b7da0cc8eb3422ac4491a1d5a6ce8f326a95898fd97e3ae7a39f6dd8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 959.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 69ab0f8795440ba3882a584c91058e57198cabc792a2e8aaaf9da8907bb67944
MD5 10f511b2aded9563fa8817b675c7209e
BLAKE2b-256 0966714d5266e2952f7b93f1b7acec9c5cce4db68ed3ed554584848603a60ca1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.23-cp38-cp38-win32.whl
  • Upload date:
  • Size: 868.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ac35ca0fa26e3a9e1914c9a22b1b02cc06e0a306f36b20f24d709c7bc91ff8c1
MD5 05c5adc0708490762a1d45e1b1c3a4ea
BLAKE2b-256 8ef82280d5f5d7ce916b7bc5caf1e7e3bf835dd92e3c704b7ed5a3f9c7696ea5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 501a9e5649c1aca14120bb7d76ee93bb993111dca2ec8c5bc584cc29a7592de6
MD5 e0db5fd67d7328a972cd3afa760375f6
BLAKE2b-256 bfbc273853b8a3b29710961fde0b48550ee601324b9f6ac8e13e9c2c235929d0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0b124216e395ea5f764e4750c5ace7332355c6111a256ea97fb9449a7f56b980
MD5 29b2dfd4bdd895abf10758403bff83f2
BLAKE2b-256 63c5340b073124b71985e21aef2a8af097f3022ce48c5dee8d992adcd37676ba

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ba1a4780881596158004f4ffef604b5c7c012deed4bac71411af6118db28be8
MD5 4a38d8c2fb4b6476c3385f37ae0bc385
BLAKE2b-256 3e7284522613588899518f80ca8692564a5f237f2e866bc10bd24e4dbb743c49

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb84e2e6134c9bdcaf56e169fd85a07d907ba9919d163f34d8787b0f1e0488cc
MD5 2b2f3862f1dafb7f548b0639ff77cbaa
BLAKE2b-256 b8b87d143ad834c0b9413a6abcee2229ef4cbcc03166f6fe9e3f63cc7551f5d1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88e32dfd48800ed6bf0e96130827fe9045cba8c36c67a7c1e49ceb3a6b747a7d
MD5 a9d917ca84bc0c07399f36886db851ff
BLAKE2b-256 33f0ead37f90ba21a428cf836c6fc4d0275bff30875faa3f2ef920653fe414b8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.23-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.23-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f7a787020e1a63f1fff902cef418196b66f783436783609868ac3565a4f1a4d
MD5 5e069cac21ecc913bbc012383799aef4
BLAKE2b-256 eecf457a317f6ce6ba1c1fd9f458cb8cf27ce6e27f5fb9d38d781ba63c0055fd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page