Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY"})

Results

The generate function returns a pandas dictionary. If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations.

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY"
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements for each class you specify. What is a prototype? What is entanglement? We also isolate entangled features in your prototypes. What is feature isolation?

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Here are the default values - read on for an explanation of each.

config = {
            "use_alpha": False,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.05,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 500,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "target_classes": [0] if target_classes is None else target_classes,
            "use_hipe": False,
            "wandb_api_key": None,
            "wandb_entity": None,
        }

use_alpha: if True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

alpha_mask: if True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

alpha_only: if True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

baseline_init: diversity_weight: isolate_classes: isolation_lr: hf_weight: isolation_hf_weight: input_dim: isolation: logit_scale: log_freq: lr: max_isolate_classes: max_steps: seed: use_baseline: transform: target_classes: use_hipe: wandb_api_key: wandb_entity:

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")

project_name: Name of your project. Used for logging.

model: Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

class_list: List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

config: Configuration dictionary, or path to a json file containing your configuration. At minimim, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}

target_classes (optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

preprocessing (optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

samples (optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

device (optional): Device to be used for generation. If None, we will try to find a device.

mode (optional): Framework to use, either 'pt' for pyorch or 'tf' for tensorflow. Default is 'pt'.

returns: A pandas dataframe containing the results of the generation process. Also logs more detailed results to the leap app.

FAQ

What is a prototype?

What is entanglement?

What is feature isolation?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.3-pp310-pypy310_pp73-win_amd64.whl (525.5 kB view details)

Uploaded PyPyWindows x86-64

leap_ie-0.0.3-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (626.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

leap_ie-0.0.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (655.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (561.4 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

leap_ie-0.0.3-pp39-pypy39_pp73-win_amd64.whl (525.7 kB view details)

Uploaded PyPyWindows x86-64

leap_ie-0.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (625.8 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

leap_ie-0.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (654.8 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (561.0 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

leap_ie-0.0.3-pp38-pypy38_pp73-win_amd64.whl (519.0 kB view details)

Uploaded PyPyWindows x86-64

leap_ie-0.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (624.9 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

leap_ie-0.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (658.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (551.6 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

leap_ie-0.0.3-pp37-pypy37_pp73-win_amd64.whl (518.9 kB view details)

Uploaded PyPyWindows x86-64

leap_ie-0.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (624.9 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

leap_ie-0.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (658.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (551.2 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

leap_ie-0.0.3-cp312-cp312-win_amd64.whl (626.2 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.3-cp312-cp312-win32.whl (559.5 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.3-cp312-cp312-musllinux_1_1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp312-cp312-musllinux_1_1_i686.whl (4.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp312-cp312-macosx_10_9_x86_64.whl (732.9 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

leap_ie-0.0.3-cp311-cp311-win_amd64.whl (634.5 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.3-cp311-cp311-win32.whl (572.0 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp311-cp311-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp311-cp311-macosx_10_9_x86_64.whl (758.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

leap_ie-0.0.3-cp310-cp310-win_amd64.whl (629.9 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.3-cp310-cp310-win32.whl (571.9 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp310-cp310-musllinux_1_1_i686.whl (3.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl (753.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

leap_ie-0.0.3-cp39-cp39-win_amd64.whl (631.4 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.3-cp39-cp39-win32.whl (573.6 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp39-cp39-musllinux_1_1_i686.whl (3.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl (755.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

leap_ie-0.0.3-cp38-cp38-win_amd64.whl (643.8 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.3-cp38-cp38-win32.whl (582.2 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp38-cp38-musllinux_1_1_i686.whl (4.4 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl (745.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

leap_ie-0.0.3-cp37-cp37m-win_amd64.whl (620.3 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.3-cp37-cp37m-win32.whl (562.0 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp37-cp37m-musllinux_1_1_i686.whl (3.5 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (741.2 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

leap_ie-0.0.3-cp36-cp36m-win_amd64.whl (670.1 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.3-cp36-cp36m-win32.whl (587.7 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.3-cp36-cp36m-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.3-cp36-cp36m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl (713.1 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file leap_ie-0.0.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 35f37402ae22bdffbf8a17df11a28260e92a1c5d7bb01e090164b578cf5b6ceb
MD5 a1861c6bb67dde00e0ebbc25d9498bf1
BLAKE2b-256 a3b6d5ac5731b15994b96d3b4aace251a9c9ec48b0ad60585736875669cef2de

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ffb9b0958d2a0cf81e313944af40e2bbf80ef303f5f420e77a5bcf3441351e6
MD5 b7c5699b2caa4b460ae55e7544c6492d
BLAKE2b-256 92d4d90cbe14585a6b203fc2c615efd8db06b9ce5259461618983548bbfadcbf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e8ec7d051591fe35fb5eb4ab6526a3a52f36b1d13d4a7e01fb6e10245137944
MD5 713b72daaf93602691d650ae9e11f50a
BLAKE2b-256 45cdb1dd581f5a58a5567a5e0e16a3779a310d08b236fc7a070a44b980bb4e74

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12b15c628f4faf1bac6c153a086811c7983005acd9956bb12a954ad86e1fe9bc
MD5 f6e841e52170fe3a5ee8d37c003bc3fd
BLAKE2b-256 43a37ca119d5ad51fee80b80b91910b092ca73dcf9b37c7b918dadfcb2c65a47

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 18a05f9fa9551a34cd2dbfd1bec8967d3954a495bb6b5e6e71d512f173fbf0ea
MD5 fc4fbf664ae09695ebeb8d6b20d19e1a
BLAKE2b-256 5887bdcfaf1d8a2e2a1f6a82516c32fbf80009171f5de0ba3c52cf79006f9423

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bef090b452d0f2f4b0f57a35704e4042ffc6005a96ba8538f71a0db22c8cf335
MD5 b3ce2bbefa41f737ae2c60e10ea97788
BLAKE2b-256 fd235a126cf44ec323afa7a252378476bfc82f32735de852da1e4e1c3cfb56f8

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 249aed5083a0ccdf59e26469d30cf7b7867105ef87f6609905deac0476a3fa1f
MD5 e93809d434c8dd65b90c658ebab5fc29
BLAKE2b-256 228a40d66aa06cd676610f2a747568c56d1c72539ab509d314454237984a5991

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 186bab46771215b75c98f002d61d01e1aaa19d41ac46ee9aa36dbd7b2e3223f3
MD5 c5a4fc793ed3ecdd89788956695f16db
BLAKE2b-256 39aa0c3f080b9d553beaab1e361caa5e0ec53583c80a6d3ca7d0d033b1a60978

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 063744fe0e45ad4310e6d51d022c0f9232aacd20eb7892d1409c28d4d32ea024
MD5 f75e70801dbb367a8437425504d49356
BLAKE2b-256 c35a8054af4850fa345a2a6301224cd93f443d9bada532d18ff01387440dff18

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05f5e43879564b5257bc4d14deafb963b61375153034a614c2f16034f9016051
MD5 aad5ad110a93d0f41c50a3135f6a4b27
BLAKE2b-256 d2c4b1021d3d9f869c5d7cd424cc9f81464858db119e91a35cffb61f1a03b2d3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6e217dbdb2a0823d9730f53b66599d6d69e97fcd10040eba6e44a4b6fea7a24
MD5 1946905f5b5a40109575c5a2718574eb
BLAKE2b-256 3f630ac9ed762b93c118b91dbb6e6a356e8e210b265d3de56b9221a131a7d571

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efaab4c170a21711fb8ccf0df57f73487d87f8b58ec85847980e5fbb022f56c2
MD5 c4910bdfa516a9087f547656eda04b15
BLAKE2b-256 aa24806261f9ebde2068df991307b25f283b760df889028eb1ed0167c2314e9f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7ee8bc999ccc66b29a676f621ef614cc874661f7b901118bf0e9fb3211d933ad
MD5 b26094a07d016e708d79d978172f1fcd
BLAKE2b-256 dfda1640b0ed09d8fabba515c6e48ca2a2890190793566f8086f51d30e25cb49

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0905b1f20335916a9985b23e373e630ea41e5f473677c3860b9803d9c7d747be
MD5 4e6fd753285cf503333c2ba12396da32
BLAKE2b-256 7a8e7110d1aa9d22361fc3519e597d578a855b03f03e0190f0ab413aa3c4c64d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c94a8b9d18b3b88a2351f4f27ae56de392794a41d17cdeef0c8911876ee0756
MD5 a02bf472187dcda1b123db707052fcd1
BLAKE2b-256 5a8dd4993a4a493a56ed92d8d54e4bb0df6f10c37be7bb19c16336082a6be63f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98aacd82ecc3d2a69a12a47b21f27bfc09548f82d495113c454be5e52490c549
MD5 18cb4549fb75d519df19b3abc9e91577
BLAKE2b-256 e897d62009e491fc76f3fb958be75ef311b7d63a0ef2439e6e1472cf760e0d3c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 626.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 12c27e6fdb8bc71d15dc6499d114b48002e918c45bde720ef8e9eb29311121a4
MD5 b1f7e30d3a5540d31eda6ea2c7de6de6
BLAKE2b-256 0a21716f39cc06adc0db9b8a3bb080e580bb41671a519298757ba05ba938d5e3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 559.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 ea0e7b32e699c2ba9d5dbbeda9553b0e22eaa13d66debfbb2798c96d94ff7f30
MD5 fa3a97ef8e9201ddf3f1f4dd2eea916c
BLAKE2b-256 08c588c6faef35e92c43802bde854b410c522c4e933c7e2b17e488a97687622b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 216fbaa329a97edb2c3e672babd6dfdef6052cbbd50d81d3058c5438ee716ec2
MD5 94e9f93cd56e40bbc9ca4b28995a1f66
BLAKE2b-256 dd056b136f777dc3f5dbd8bfc241e23131c0c160e96bc52002a0d73785b15622

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0b442be48af4ae6576080709652487ea499648f7029b5e27b7827973c66a81b9
MD5 e9f33871334658b1ebb762b050d74380
BLAKE2b-256 33d49e826cadfbad1e5cfc9114763d1684f6e9ae32bf218a64c6e0e9584ac91d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd6f1fcc297bac91ead8dc00857cbaa4d0e169eba31cab508e97e5f0018c67e7
MD5 92f9a3705fbbac6d130d4de1ffef5b83
BLAKE2b-256 3c9ab338a12feb6724b181793ceb5ca245169a1680ea78a9ab32c57286136b49

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2faddd11269ff52f99fce01be9c698a1eb08c6e3693f6b1c83ede72be2d3b8ae
MD5 9dec3bc835dbd54698dec246215c013c
BLAKE2b-256 9d074e413a2d1b93468d3a4394e73922732ca51d7e7b304c07c1f8b8b318c1de

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5453d49d4725ea6e667dff0957cd9f74b7ada31970007bab396e07a08ee2d23
MD5 5caa033d8e0261d711df6edae58ab728
BLAKE2b-256 b2722dc068bff736d6a7dcc4a297084b5743f7987ee188a80336c058f4777d04

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 634.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c678cc6b15cd7d73abe7da1dc20201f7bf8e8c5745488c64128e5bacc4d097af
MD5 49d89b18a4e51033b11fc176edb58f61
BLAKE2b-256 2263acbea5ffa484ca9a82604e4444b59d84d08ae38ae2fbb61261b5bca7378d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 572.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 199fa12db3c50d1bff582560bbedee8d0d29d4bef48d106e03a2aded5fb0684f
MD5 a8205eb310f19c71cfc0de217cae1f37
BLAKE2b-256 1049ffc75ee51c12f03bd2c30031755c65bd785632e85935054bfc114324c775

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3558de5eb4e7a119229a38a5814f0a05dbdb66222da74c41964bb975fd94c8c8
MD5 165f12d6d0446ec065dab2033bc928b8
BLAKE2b-256 55aabc6248c71013231762c0af0a433830da48b864a79e47401765d5aa5a56bf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0f44e915b4abf19cce253603351c3bfb8ced7de9651284e1e70e11ae844e05f0
MD5 6d391e34962d2fd56f5fd10ded96ef6f
BLAKE2b-256 d8efe529330f91e37769a12e53a29af0c3f4e573c2fba4e4b866ed606c752881

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dcde85eab4b2b619380fd1582c3d40ebbdd8f396ecb2086e4c929e14e3dbecb
MD5 22a5c6d9d88694a7d8a4ee29fa401c71
BLAKE2b-256 6496b269f8357a6d450406dd78b629ffedebb2bd504f76b16ba900b5ffa8ab33

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f02698ecefa1e890db2c3793002d502aa41503dc44685f21f87744800258cdaa
MD5 2d9201da9a8df2da1e49ed9d91f6cbe4
BLAKE2b-256 a4d75aaf359bde0d7e71d8f856446cc44bdefbc2953a25758130abf64f3c60fd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50f1f68e6d996c7fc6e8556a931a1912907e33634e57bf829ce65beb4ee09386
MD5 c95a28d79a16b043488321d00e205847
BLAKE2b-256 563542005e060602918d27834fa3c1e08ff16b30a8915999175eaf11ad09474f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 629.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b6b82fdfee6a0d568c348bd19b00f7530cde69fd3f48203ec619b65e0795cb97
MD5 19cf6680b3f8d841d631069565850c2b
BLAKE2b-256 812cb70a1188202ea4edbee78e7e10c6e97466a40f54ef185bf1708dd4b0d57d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 571.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 da88ef31f7fa6bda96a972e4b596bc3a537609f3e7af9fa647b7a5baa2066fb1
MD5 aff5832cfc60d69a4233e1e2f5e779ba
BLAKE2b-256 af3938d8070604105b541a48a7f1e84688f8cfed535b1fbbb122fea8f517ae7e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c5f2c99eb004310213b50b385c61c3a9bac8d45201105a044dc15da21fea2c48
MD5 ad2a9f5bb639f081293ab1ad6e7c3d42
BLAKE2b-256 ea4392307a4d9a9415e2931153a9a099ba4a1d24af4f5895f7c0dca1d2d5920e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fedbd86441ac29d0f1046924b303a289093ca6735128135849aab181d98b74d7
MD5 072e2a9bb8fa14db8fe91825d6ee6d98
BLAKE2b-256 ab4af7c45db3e47c583fddee1257b29631a67b0b9d3d3e5c93f842304de2b679

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c21f93bc49784343c3061b7d81fc56d1f154207cc9016624393d78681bcabff
MD5 8f448756a2e2943e433a6666aa30e13e
BLAKE2b-256 7d06be14c7280114e1c9c0f359dee6f7d4466a774383d2bb3e393d4c6b5b9af3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c200d686baa58752453d3522345f2e291fb455a076d03eb290b493673b4afeb
MD5 bb5d3e7739125f7935829e88fd5c3a23
BLAKE2b-256 90ae1e56b6db8882ae2980c1ec28beb74fda72b5b63711aeacc9161a312abb56

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81f4a709f4658ca0e7738f211da46200a78d748196e7860d3c43e893c4fa3536
MD5 89265c59fff16124ebace3da27a33202
BLAKE2b-256 753d1fdb21c06301555dc2d0957c45651713fd3f8f37b32160b1483554db7517

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 631.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 72e8faf1646049e5a6967c266bb3cce2626e3648e9df2b4b8c439fc54f09ffc6
MD5 4f780178192f131113c1f5288718918d
BLAKE2b-256 e8f86675d85a9c8613e1c423d7457d318ef0a06fcb6280c479a2d428c2ddab3d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 573.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 299f260c3a413e905ee9d934ce164b092060279f026a1e883b5f02373fcbd17a
MD5 4c13f6f205c35c7b6e930214711e21b6
BLAKE2b-256 48d720947fa6ca9181cd2d78bbe87f6c83bc3d690c3587218cacf2e1ee3124e0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c78475ff1958797050f213ee6a10d7c47b45b7c9e559021e3e6f7cda3f362784
MD5 d4ddc03bb21908d5d3228eb1bfeec660
BLAKE2b-256 6673a21857b18ec3f35287576c6a599ad080bffa477dacaf90a7086311fbf85c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6a6301e681e10bba3b26d8cf1936f3aade86fe29755aae0186d2e23c8da6f0a9
MD5 c7987447dd739597e41a9956d0e9da9f
BLAKE2b-256 d85f904cdfd899bc9961712e4e7d110de98980588df220eb868c89e81117f074

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25252d58c81b4ce5cda78388e00a9c1f00216d2cdb2c515d45825913736755b9
MD5 81eab124b288a113747a97d43aebec2b
BLAKE2b-256 53e7597bf2f846a29a713c432a75f06f036218652c6a248d3b32048f4cec632c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d54cb1468a407540d420a48b47025f1e704f481c5558a0bf447f4faf770a35d
MD5 3a44acbd205ffe3480a914014eee02c2
BLAKE2b-256 eb00fa6572fcbec6a68a6ffc5895cbdc012b9596e94c4b9355dcb62f19dd020f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c18e200e9d0f15280d56af395ae166c9b032f5cc1e84df43bbba53edfb658cb9
MD5 3cc9c122ad4594aa06026b24950136a1
BLAKE2b-256 902e3375f42a663d8829c1ebfef6e33203b57dde4ccfaf11204b68221f9afa81

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 643.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4e0ebb4e955ad7ee7abea5dc6c4c424399bf746cf9a6ff5f065c0a9a3ee49358
MD5 7fe3e129b0b366a16a06e19d5155926b
BLAKE2b-256 83292897758ddc98dff43c63f3d1cac0f88969f85082744ad7390ffcb700b93f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 582.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9b86edb456c3e9478e6d52060322551f30613cfc53b8f9817b34084a6502aad7
MD5 6433924b0589873d5d12a231e4be36fb
BLAKE2b-256 b3062c7410d9c7df158328cbb3d906e4b4d4d656327569048d22ce00fab003cd

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eba64199933da04beaf410d3b4e74c060c928d3060852044b820a2d8c170e3c0
MD5 bbafbdcf2f46e5fe45cffa98f06a67f7
BLAKE2b-256 ec52003fc54531449c103b03f3e686813b27f09d8b626e03db56580f8852f65c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1a398abdd56929588e66b2b8ee96cc2016b812196f20baecf1c432841592d65a
MD5 425af3b2d2293dcb5cd121db0338fc09
BLAKE2b-256 633afb0f48d84ede573609a758b20f263914484be422457d1c618147bbd6c300

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9892dc04224802f8ac4c30a4c238ee7c48b7bdde152c1625754b258b17a8acd3
MD5 4ba8ac0540811659d3687102541a49fa
BLAKE2b-256 b2fad647c9484e5b20e9e6baa5c2fc47a7470f6e6b76b51e582ba312f8c33de3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a69e626b2597395b612fc63d1a6b2149c6504540b1a46ba0e07b89b935d9a9f5
MD5 232506a94af4595841ba64c7488a4560
BLAKE2b-256 94fd8ca85c078c93ef2b4574c9c96520172c5ee456db79c3d7990338e1839dcf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff168852fad43568ad9010e19f750602d0f240703980ee45b24c73cdad166598
MD5 5b97a77e9519d104db68f5c918cbb981
BLAKE2b-256 2efef4843ff239c8e3993831a2c0c28f2015bb8e3282522fac3546d90b79cff5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 620.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 73a8cf5ffe49a7128620f28f67df80e59d172bcfc1d6473a9a3ba316ace623ea
MD5 0e9fdc9c01fc40db2b5b0c71620ce80f
BLAKE2b-256 ca0df258b64ff4e7639129d26c663c3a7659cc8362035f424daa40a0f2d9f95b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 562.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c87d6c8c51189ed41739d6d8bc142e0e53dbe532c35008ea0429d4b53455587f
MD5 dee57ac728f473361d5612f661ce7711
BLAKE2b-256 cf31c59651dba0a7247c2c1c426c6c0b2a0df63f5ba683ede11dbe3b6a593e81

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f1f3b18e8fe25e7a6b99bfad8dfe0863b061a3737cefc9ffec1aaee6d190046
MD5 e0d783c07cd22de686ca1a1880c659d2
BLAKE2b-256 2afbd0b6d2222fa19ed19a77d98b3c0b76798460bec1dffa9a98f43f32cc8ea2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f6c93efe955056546573203e3ed1f203ec2fdcb0b9756075ca580199c6e1ec80
MD5 8af67aebc785e5c8b661c1b13fae9589
BLAKE2b-256 dd69a080af3b46c5737450c0f0c01d427263d49d50b145dc773da73fd108c3d6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd14d470c9868fd60cea7d46b555c67f168f0535f8e3ba90682b8c023c8403cf
MD5 8fa044ba382c748f37dcfde518e87c33
BLAKE2b-256 2bf7b6fe381c1752c3a91224a5878001156b80f501eb48ba9993ef9ba60286f6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e29afd1509240c0f57e2005f62e6a4d0cec7aeeb831c47d7bb3fc01e0c81c3ac
MD5 4ceb0d7bc64a63ad6d66151f2262ba17
BLAKE2b-256 b030b00e37c006416d37b8933a95e486fb6d35c70f1c758777a623adef61def3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b33f8fe00ebe58564fea56b48e65c9c259bf87582ca48d7003fb25dfda32a75
MD5 18ac0e6a5647014184b8850bb7857a3c
BLAKE2b-256 7e29932daa143d3d93d14c50ea22d1304a3ad8ad571a56f66708f5eb8c792120

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 670.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dc794fb74ec4f3d9ce9d2348cbb925950588cedee398023a6d9f167cd54bbf22
MD5 8cd76a9ba71589f75fa709a08274b115
BLAKE2b-256 61a9006dddd5429ded7da7046ad76e4da224f4c895cd41ca697e42f3f369913f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 587.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 65d7b70d48721fa0001c06ff0a073960a415abcc70a954827da0e93d5fb9a29d
MD5 545ead179165a8731e39cb04e5c60972
BLAKE2b-256 2c6adf35f18135aacdbbb220cbdc4a00330f63dbfe878533c41d1262988be2f3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a7a7d70a825166e178621594fc2f8b6fb8332bc2ba76f11674254eb35faa363b
MD5 e5835e332d377539b43e2e23e52b3f26
BLAKE2b-256 7612c4d2f339659f54ed343e689a520a161ababbf18efebe4ca8fd5699f546ca

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fc70a86a21f65cf95c4de7d7b6081b5321a65990dc94ebf5bcd88d6508f2cb48
MD5 7a1fa19294226f2d7f3bcfed4f04a5a3
BLAKE2b-256 506a10232d3409a79b377587e9fc3d93fee1b63500bb43a5b11937fba620b20f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 274333700c5b1a62e350c06f2adeed815c59901aca72be95826aa5e6de9dc0ae
MD5 5a83e8692cb419d485cc76b84884d903
BLAKE2b-256 72b89e4f2f2d0b66018967e1f7404cd4ff699ebfcb130bdc2d8c8bd8be5364b5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb3e2def7ba056a9c9b2aaaa66003550767a37445dda8dfaae8504b065a0847e
MD5 97f69e988b4cc98f9b61688f6fce9367
BLAKE2b-256 66769a335e2c5555e60dca28aaaf7dd2519d4ad7c95278aa26cff13aa9b0cf35

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6aa593b6eaf58e6d2b5285ef4c9af70fcd86750ad5bd8e597e1e6df962afd4d2
MD5 503e1409ddfe52c5f42ef565bf7dda52
BLAKE2b-256 643f4520cbdfff0de63e4902846c3b097d5d4bc83bb392a5a447da1925e3375a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page