Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY", "input_dim":[3, 224, 224]})

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For best results, you might have to tune the config a bit.

Results

The generate function returns a pandas dataframe, containing prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations, or log directly to your weights and biases dashboard.

Supported Packages

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch. (Defaults to pytorch if unspecified.)

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
    "input_dim":[3, 224, 224]
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Multiple Prototype Generation

To generate multiple prototypes for the same target class, simply repeat the index of the target class, e.g.

target_classes = [0, 0, 0]

will generate three prototypes for the 0th class.

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Typically, you'll only change a few of these – though feel free to experiment! The key ones are as follows:

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000

Here are all of the config options currently available:

config = {
            "use_alpha": True,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.005,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 1000,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "wandb_api_key": None,
            "wandb_entity": None,
        }
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: True
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • seed (int): Random seed for initialisation.

    • Default: 0
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • transform (str): If your model is trained on inputs with non-location-independent features – for example, brain scans, setting this to None will probably result in more sensible prototypes. VERY experimental. You can also experiment with the following options: ['s', 'm', 'l', 'xl'].

    • Default: xl
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. 0n a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.6-cp312-cp312-win_arm64.whl (630.3 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.6-cp312-cp312-win_amd64.whl (757.6 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.6-cp312-cp312-win32.whl (681.7 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.6-cp312-cp312-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp312-cp312-musllinux_1_1_i686.whl (4.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.6-cp312-cp312-macosx_10_9_universal2.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.6-cp311-cp311-win_arm64.whl (644.4 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.6-cp311-cp311-win_amd64.whl (767.6 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.6-cp311-cp311-win32.whl (696.3 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.6-cp311-cp311-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.6-cp310-cp310-win_arm64.whl (639.0 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.6-cp310-cp310-win_amd64.whl (762.0 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.6-cp310-cp310-win32.whl (695.9 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp310-cp310-musllinux_1_1_i686.whl (4.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.6-cp310-cp310-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.6-cp39-cp39-win_arm64.whl (640.5 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.6-cp39-cp39-win_amd64.whl (763.5 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.6-cp39-cp39-win32.whl (697.6 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp39-cp39-musllinux_1_1_i686.whl (4.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.6-cp39-cp39-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.6-cp38-cp38-win_amd64.whl (776.7 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.6-cp38-cp38-win32.whl (706.6 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp38-cp38-musllinux_1_1_i686.whl (4.9 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.6-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.6-cp37-cp37m-win_amd64.whl (751.4 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.6-cp37-cp37m-win32.whl (685.2 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.6-cp36-cp36m-win_amd64.whl (806.3 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.6-cp36-cp36m-win32.whl (713.4 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl (3.6 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

File details

Details for the file leap_ie-0.0.6-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 630.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 e35cada8c975b0e39cf43b1e0f191e8ed1d9b431f73c7e7420558f64472458cc
MD5 770e0ab8b0da8fde1dd9e84969dcce6b
BLAKE2b-256 521847e4a967c36d0ceefd234d255621ddb663dea9ca5e0d3a12533cefe79658

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 757.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a1e77e6519a0d582cf249f3f2f9dfcff9d63911521fc5bd0911718ab680a6514
MD5 e959459630202ae36d8b1311e7ed550d
BLAKE2b-256 5e5df12708b7e60e17cbf8c13c6b848fe0f43d90f0041582a7ae1f40cd122462

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp312-cp312-win32.whl
  • Upload date:
  • Size: 681.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e955d2d0865b4a638ada231e7c75bca21ad7b3f712a40266c0becb93b9132f09
MD5 dbba4664bb306c57e37a426364c972d2
BLAKE2b-256 8134adffaeb062a886ae639a40641e2e2408eed6d7caf364c5156612155b6204

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 efb9e51afb0503365d0f0dce6c26b96ecf1fbc398685e8d8d744d4163fd43fb5
MD5 92ca1b776e6fa2ad0e0d3616c45a117d
BLAKE2b-256 ac58955063245e9e589e1593793e9222685c6fe4368117aa69b31af139a6b395

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 964f6ea6ac25f7905d23c7239a35653d3d9683bc1f7caa004dccf1830063ea41
MD5 5603acf4f8ada043715904956a8c579f
BLAKE2b-256 ba4be1de95455ec7989c5bb97f72d72892bd0d8141f88257c8d6ca3a07b8577a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0722973671de0781163f789d49bd8cf9e7da9a0b197c0b5adf614bc22466558
MD5 da4c96f75a0b15207de8bd853e7efe82
BLAKE2b-256 33e6d18c0e8d11e3a1268a9b52a48d6af1b63709d9cb86f1f724785a8f8b186b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d2f2e2ba58f5914e60a0f0f47232a3d6ac5c7e7260d36c7bc44f96414045b611
MD5 44125963bc6970a402f9eb96cacbef8f
BLAKE2b-256 a97166808fbfb3c4dc7a151c14d336fa7ddaf183b326ab9ce3e4ff3ca670ff14

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4d089a255587315f796d35602f59d1a633d50245aaac25e94d75939b241dbc57
MD5 61e4febc02bc5cf642d98fa79eae02ac
BLAKE2b-256 27438e2bba1d373a776971200e4f555d8a2e2eaa8825f4fcf71616824836eb13

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 644.4 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 85015bf7bf3616c967a58662b4627dd529a575cfc77d2e871a72f82b68af9082
MD5 c77ba4cde1679c2b2d420fdaa9705d09
BLAKE2b-256 193af472b3beaf3ec339938389a80242e0a3ce35b9d05c5929e9b17d217a6413

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 767.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae2a5be0d416f23edc28dd139d9bdb508b689fd5a0b065a7c65c94cab49c7cab
MD5 961073055363271a92764576da3be42e
BLAKE2b-256 50860d145c5934bae4fb28713d81b06357e432c1d5c18d93df12cad699c493f5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 696.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8d44d243f798cf19940e16f8b195e9b373d827d131e989f1e848c36b16e6bd61
MD5 9cae1f86b3ba6deb78de90d5470936fe
BLAKE2b-256 6d71fc8a412ee6590cbfde9b92ef033e8889d94718236d2ea154ad5df70b5a26

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e4634f863623103996c39bcc5637be7115f3fa447bb8d7801e3c3bd58661df50
MD5 9de429d9ed3de36b0fad64a3ac38a792
BLAKE2b-256 eec12ae7315686cb2e8ea277a67ac79d7f68bc45fa924d22f1b292b6d9e783b1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a5b37b1ed51fe89c8b083a1c724ed9e7e9d3a273ca3f697ab3c0054d037146ca
MD5 4676a0dbef8e56c9ba0ed7f62693d0dc
BLAKE2b-256 11995fb9efd1030cb3d51787f813bae49a3ffe6491221b2266b9286bfeb892ae

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1719da5999aeb60104e53840b0f4a67b88b805c8cd28f0e79f2fb4000bce4144
MD5 663e3c54838b20319fd90e6e5c64a5f4
BLAKE2b-256 9dc3013df87a1667ee18e18437dec35d1f45b29c558778523c16c6d7cb00ba9a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0c7b9004817ec40ac11fe36fefb1c27dd5ddabac933f5df674b558334c3e822c
MD5 8196f57b9346c113c7a09e4d79f59536
BLAKE2b-256 9889d25d8675196a7b85a8b61e63ba989a0f4566ea83f92e150d01cbf2c7cb2a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 17c620e212b9c8cb848dcec2fb032f592a664a432214e3a197d5a31b0a4e0586
MD5 764153c5490a8d5bbc91b121386841f0
BLAKE2b-256 b8bac691ae619a25ff161fd61d69f513ab678c71950fd5c17ac036920657f372

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 639.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 f99b534c9d57b6e787bde914abefa03a2011405c229f1ef7425ca84924db8409
MD5 a02dba4594142ae699eac8fb42e4455e
BLAKE2b-256 e0aaa03acdcce501c767bd89a05ab26ad298a19c3ad794f29c9fe2e9912f1d95

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 762.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 48916ce62548fbe7a2004274406d5a1f0b0534c1cfa670896c6dbd6c780c30d8
MD5 eddc83ea03dcb5c2d5daf188b52491a5
BLAKE2b-256 27a250072397000d50197c5fde7053589634dbb6cbe4223ef9586a9ed9c1b759

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 695.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c5466040612fbd08e926f45db406bb9e921d51eec39ac9bd3ea2ef05e90af5df
MD5 b1b4979d65a834f620b30fbdf73632fd
BLAKE2b-256 2a69857426faa97768e07e1883b9385aafdb8e620805c97cf9e2a92a4b3c9744

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1461dfc7b13af0ee7a0c2ca7e792622c4c2d10a10c94aa6028a5497a64933717
MD5 74bcf4ad681602c7cef58f136dcc89d9
BLAKE2b-256 14151654d092a7b56da20b2f7b83b5b64770f74b7ff66c10d3f5393f9690780c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a9dae22d5306500684a0d74f9a1f401e597bb9844656fe25602d51cfbd2d5ee3
MD5 3a338380a284a26c4fe5171687687d4c
BLAKE2b-256 bd9d2474879a9fdb6b209d1f464ffb5515079bfbc88de41087c1792818c1071d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6ec5fc10012c32f1213b06399acf4b692abbc47d5c7a539851114ae5907bb8d
MD5 041f23ad18316428b81a41f4d3154c8f
BLAKE2b-256 e1649fa55cf5edaf1bb1a5466ac0af3ad1be6976e42019ffa919b3ae3c3f20c7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6ab6354bc53f89550e3c779e5982eed61cab33f46390eea46c581ba0d18d90dd
MD5 1c12f545ac3d1692359e3d62971f5e1c
BLAKE2b-256 d71e87d6059dcda30abc777014b942255395ed350d371862ad882a45b2e6f60e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 990e1438cc22e6fbcdc38ae51b7c09b7aabaf06d250126598b07a5135a402229
MD5 70ea999495334106598b314c974b9877
BLAKE2b-256 c3403d26a81e119b60dd1170e1272a118d929b9f5810b41ae15783546fa8a287

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 640.5 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 7887482f011bf5538f876c577129f6163e3f16e46485eaaccab2ae9651d88dee
MD5 cd39553ef22397c4abf87fce53a62519
BLAKE2b-256 04c1a52039e682160dd15693d253af816731959c99cdc9188f6b2e759b9751d4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 763.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b4194c9e548cb2042e30df6ebd458e687b3df3dfc210174a55901501cee8e27f
MD5 ef3bb1f1330a6ab6237d80bc68a2a288
BLAKE2b-256 3120dddd21022a0e72ab40a02bbf4737649a1c427736156331f3997bfd6101da

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 697.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a0a07d0490b20528d010cf3f39d4fab02dc4905a04052bfa3547a9aecfd2eebb
MD5 5eeb1f76bf9320595b097ea112833875
BLAKE2b-256 d3e9f9918172092b8a651ea3de15994fc5be12b04e69e6c98e5e77b30718f1b0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a4969a5eba6434f6bc4a46120e7d6dc2ca418bc939781c62223e8dd0ec5b251
MD5 49e48a0e70e7c0c5e2050738eeea02a9
BLAKE2b-256 5b1f72bb9040d4d1682119c0dd57b4e22cb1e0f660f9db37c43e50b99579ac3f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 76297fa4399eb1faaba00349862bee897d6b1de0aea341a19b2301b470986ea8
MD5 c83633aa68d0a9cf5c8c9249859741d8
BLAKE2b-256 6f086566eac96d8171d257e6cfd1b55f4d219b3d089bd619e6c4914b3a6076f1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9d215d4d75e51f233feb7290b2ede42d940a69a392e242d6ada6dfb74c677f5
MD5 aab5c4f1a0ac9f9045dac4494b94cd89
BLAKE2b-256 14f9c4b5bbbbf71430462aee1373e5affebc3376df6fcc801ba7e82e6c3ea18a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 747c61c4652fde5f5c609dbe55f943921a17702db0da1f8a9a199a23a8a807c1
MD5 cff038ff51e1fb2fdb72a50d01ced103
BLAKE2b-256 204dce4d4738cb433369d55dc18c6600ff841ba098c46b636713c66f7dd5eeb4

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cf3a3886cecf7f3f592812efa213ff741c4e57d8ff4fd8e16ba0203daddc455c
MD5 2fd6eeebca382052c913ed741482010a
BLAKE2b-256 8c898148d56f108eff1bb42ca985b670ca4d41ecbcb05846757f33961e5b4811

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 776.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 58b93cc98445732d111b84222bab735287813cfaa5c2931f174f38c226581ea8
MD5 0485088ecd3f6647b23e9ae96c7d8714
BLAKE2b-256 9438255cfe01e28746dd7f9a590a24bc514befa123d98f2e51c8312125dac3cb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 706.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 09d1e98dea60e7b46aa449a11c2c124f0a0e4b05eb1927a1d6991d23a9eb814c
MD5 b73919afa1f36dacc279c2e5859a04f7
BLAKE2b-256 800c9987f9eaf74bbf9e702ef60a7083e558b7c963768fbb0891c261a98a4720

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8050ea6d0e37c541b1e3c8d24e9cf92ec4fee45cd80c21adb88a1c8a8c9bf05e
MD5 97bf0ce0bc208b71fc57764d2bd5e310
BLAKE2b-256 51932ac8b236a99791a6ee58bdd985f2c983aa0fa75067fa275212405c20bae3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fe2fc0ae649ed56c0e12b9e0729a339bd2ff3c28dd148bf5b33ed57cf078fa01
MD5 85b5272e814343dcbf07c49dc64a490b
BLAKE2b-256 69bede73a77cf4fe543fbc311511d4afa516b0c0b99293616586a25fd45fe17a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6235fdf1fa6de58d31d887e10cf3a4fe6b5bd4fbfd0176b03829280dbf92b9fc
MD5 91d6c355b3752b183d1059c7e040b98d
BLAKE2b-256 f96c20d721b2aa9d3cf49156f5c99c7308f3360f0fdbb9bb86943cf999e6eb43

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 da70bdd8458fefeb41e68700c7cb056d938ee0a8e04f97922def2a4340ca9e4f
MD5 33fc882093e7a2c7cc86989cfc3138c0
BLAKE2b-256 dc440dc4e57b3332772a69bf1488a1fbddf084f49e360fda68dc99d10cf8b26d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4168f0132f9d1df7f81f4486ff2b9b47c2d66e6d58fbb9b69544cfea8c3b1666
MD5 86a12a6cf5549ef3900e0380e646637a
BLAKE2b-256 f0cb492e66f47192a8388f9dafdbfce0b223791ad2394fbdd048481f83439c82

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 751.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ac5043095d409a975e04dc78cc15e211e6f2c43280e0e7c5c1e1487758651f46
MD5 75a9110fa38deb07dd73cc9253588b09
BLAKE2b-256 e3a0d0db72ec557661ebe938946af8643afac60974479eb1009110e438165bd2

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 685.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d90e5b901eff5f5681da14ae08dd17d3173bfcc01bd27bf2b24ae4a16213d4ba
MD5 d128f180d4f154cc2b64fa42743b4e7c
BLAKE2b-256 13812503cf042fd81b9e127ae33277364320c164d35ebf432f3997dbf60d262d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fb8ca221d3662a5973564b5fc44f24180e661c5f7177efebe6cf35ca7479ea48
MD5 e4bdbc1e4ba6f8b2d926d4b4b1d21cc4
BLAKE2b-256 0d6ce56b2e90fa02b75ef8912c2a53c5d2cf0ec7f78637e5ac6831365fbdc28c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 da28f6fdde5abab07459977a61066030c1e54e4547ffa61338020aea7103ffc1
MD5 5897c4f3652dfb0585a70d73d958105e
BLAKE2b-256 495151a8570bcb99b264f35e45c076643b6b23e768cbb316d9321fca0f52df62

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2c9f84ea70d71f43b45befd1ac6d7b4b1abed7e0339314ede8d067c75def278
MD5 f4bd6a3964f3ecd4b703401dc7b50294
BLAKE2b-256 669d89d82524981fa7beac07896e891afa510d9e75bb4700e26402aa9ac2c065

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1d787055a241c7a98ea22013b7a62635189a2281ce6c1a24c9811125b0e1fcad
MD5 ccd2e3c5c5ebee6a5af70074eae31640
BLAKE2b-256 4acc3a39bbfcffac4c431a8579c3bf4d88f78c54d62f8f3c0e757c5e8c08b57b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 806.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 39000e1ff502bcdd7dbaed4d243d0bb39295836c63f8ce7704574908a6de37c1
MD5 9e28c005c0891ab6e217b8ec7791ec7c
BLAKE2b-256 141c7c7779b2b790c1e7a8f6c385b885690322fac2923428f391e4fb770eba22

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.6-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 713.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.6-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2d2f6965058e62308442c8d2824eae827bf6f176fee966a1ab83e10799a71c09
MD5 d7a12455b581f41588ad13f8cae65881
BLAKE2b-256 17edfcb21b0b8cb1b73b25b6fb7f12824289a18cf7bc05beb7347ef6ff834d28

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5774b26515dc88d4a6a2e588546344ca7514f3ee2681af6a1abafc6a26a22140
MD5 266e3a0f72127b4c64e6450ae9bc530a
BLAKE2b-256 1046076fd71dbfaa8d76092339c30b375f006f8026aa58a4ba753742e6e818e1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5076b2da2fac98c1c3c1c9a57731502a462fdcd380f6663ecd95208d40fa7156
MD5 6ab05ffdff4ca35748c72af9375723e8
BLAKE2b-256 156d8afd3f86a377f28b01c7cfb442b8a44652aade414f020856659d884d37f3

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 296e254aa00f02e20d521339d8808269667f0662b46692f8089422fa23c4bde4
MD5 0c17bed38bf798fa9a95428e969fd123
BLAKE2b-256 d05d5534058d81325a0990ca720ff9fcd186ad334a067fef36ebde8668376631

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 50c15b82ca0207c018aa20c51654c5beee02c1500665b5a2bb238c81ecf48cf2
MD5 1be89b919021c6bb932f9fc9796681fd
BLAKE2b-256 427a082a49ea567262cc0892a2ccb2573cead022f7742bdf39b8f7719370c69a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page