Skip to main content

Leap Labs Interpretability Engine

Project description

Leap Interpretability Engine

Congratulations on being a very early adopter of our interpretability engine! Not sure what's going on? Check out the FAQ.

Installation

Use the package manager pip to install leap-ie.

pip install leap-ie

Sign in and generate your API key in the leap app - you'll need this to get started.

Usage

Using the interpretability engine is really easy! All you need to do is import leap_ie, and wrap your model in our generate function:

results = engine.generate(project_name="interpretability", model=your_model, class_list=['hotdog', 'not_hotdog'], config= {"leap_api_key": "YOUR_LEAP_API_KEY", "input_dim":[3, 224, 224]})

Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). For best results, you might have to tune the config a bit.

Results

The generate function returns a pandas dataframe, containing prototypes, entanglements, and feature isolations. If used with samples (see Sample Feature Isolation), the dataframe contains feature isolations for each sample, for the target classes (if provided), or for the top 3 predicted classes.

If you're in a jupyter notebook, you can view these inline using engine.display_results(results), but for the best experience we recommend you head to the leap app to view your prototypes and isolations, or log directly to your weights and biases dashboard.

Supported Packages

We support both pytorch and tensorflow! Specify your package with the mode parameter, using 'tf' for tensorflow and 'pt' for pytorch. (Defaults to pytorch if unspecified.)

If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

Weights and Biases Integration

We can also log results directly to your WandB projects! To do this, set project_name to the name of the WandB project where you'd like the results to be logged, and add your WandB API key and entity name to the config dictionary:

config = {
    "wandb_api_key": "YOUR_WANDB_API_KEY",
    "wandb_entity": "your_wandb_entity",
    "leap_api_key": "YOUR_LEAP_API_KEY",
    "input_dim":[3, 224, 224]
}
results = engine.generate(project_name="your_wandb_project_name", model=your_model, class_list=['hotdog', 'not_hotdog'], config=config)

Prototype Generation

Given your model, we generate prototypes and entanglements We also isolate entangled features in your prototypes.

from leap_ie import engine
from leap_ie.models import get_model

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# indexes of classes to generate prototypes for. In this case, ['tench', 'goldfish', 'great white shark'].
target_classes = [0, 1, 2]

# generate prototypes
prototypes = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=target_classes, preprocessing=preprocessing_fn, samples=None, device=None, mode="pt")


# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(prototypes)

Multiple Prototype Generation

To generate multiple prototypes for the same target class, simply repeat the index of the target class, e.g.

target_classes = [0, 0, 0]

will generate three prototypes for the 0th class.

Sample Feature Isolation

Given some input image, we can show you which features your model thinks belong to each class. If you specify target classes, we'll isolate features for those, or if not, we'll isolate features for the three highest probability classes.

from torchvision import transforms
from leap_ie import engine
from leap_ie.models import get_model
from PIL import Image

config = {"leap_api_key": "YOUR_LEAP_API_KEY"}

# Replace this model with your own, or explore any imagenet classifier from torchvision (https://pytorch.org/vision/stable/models.html).
model = preprocessing_fn, model, class_list = get_model('torchvision.resnet18')

# load an image
image_path = "tools.jpeg"
tt = transforms.ToTensor()
image = preprocessing_fn[0](tt(Image.open(image_path)).unsqueeze(0))

# to isolate features:
isolations = engine.generate(project_name="resnet18", model=model, class_list=class_list, config=config,
                             target_classes=None, preprocessing=preprocessing_fn, samples=image, mode="pt")

# For the best experience, head to https://app.leap-labs.com/ to explore your prototypes and feature isolations in the browser!
# Or, if you're in a jupyter notebook, you can display your results inline:
engine.display_results(isolations)

engine.generate()

The generate function is used for both prototype generation directly from the model, and for feature isolation on your input samples.

leap_ie.engine.generate(project_name, model, class_list, config, target_classes=None, preprocessing=None, samples=None, device=None, mode="pt")
  • project_name (str): Name of your project. Used for logging.

    • Required: Yes
    • Default: None
  • model (object): Model for interpretation. Currently we support image classification models only. We expect the model to take a batch of images as input, and return a batch of logits (NOT probabilities). If using pytorch, we expect the model to take images to be in channels first format, e.g. of shape [1, channels, height, width]. If tensorflow, channels last, e.g.[1, height, width, channels].

    • Required: Yes
    • Default: None
  • class_list (list): List of class names corresponding to your model's output classes, e.g. ['hotdog', 'not hotdog', ...].

    • Required: Yes
    • Default: None
  • config (dict or str): Configuration dictionary, or path to a json file containing your configuration. At minimum, this must contain {"leap_api_key": "YOUR_LEAP_API_KEY"}.

    • Required: Yes
    • Default: None
  • target_classes (list, optional): List of target class indices to generate prototypes or isolations for, e.g. [0,1]. If None, prototypes will be generated for the class at output index 0 only, e.g. 'hotdog', and feature isolations will be generated for the top 3 classes.

    • Required: No
    • Default: None
  • preprocessing (function, optional): Preprocessing function to be used for generation. This can be None, but for best results, use the preprocessing function used on inputs for inference.

    • Required: No
    • Default: None
  • samples (array, optional): None, or a batch of images to perform feature isolation on. If provided, only feature isolation is performed (not prototype generation). We expect samples to be of shape [num_images, height, width, channels] if using tensorflow, or [1, channels, height, width] if using pytorch.

    • Required: No
    • Default: None
  • device (str, optional): Device to be used for generation. If None, we will try to find a device.

    • Required: No
    • Default: None
  • mode (str, optional): Framework to use, either 'pt' for pytorch or 'tf' for tensorflow. Default is 'pt'.

    • Required: No
    • Default: pt

Config

Leap provides a number of configuration options to fine-tune the interpretability engine's performance with your models. You can provide it as a dictionary or a path to a .json file.

Typically, you'll only change a few of these – though feel free to experiment! The key ones are as follows:

  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000

Here are all of the config options currently available:

config = {
            "use_alpha": True,
            "alpha_mask": False,
            "alpha_only": False,
            "baseline_init": 0,
            "diversity_weight": 0,
            "isolate_classes": None,
            "isolation_lr": 0.05,
            "hf_weight": 1,
            "isolation_hf_weight": 1,
            "input_dim": [224, 224, 3] if mode == "tf" else [3, 224, 224],
            "isolation": True,
            "logit_scale": 1,
            "log_freq": 100,
            "lr": 0.005,
            "max_isolate_classes": min(3, len(class_list)),
            "max_steps": 1000,
            "seed": 0,
            "use_baseline": False,
            "transform": "xl",
            "wandb_api_key": None,
            "wandb_entity": None,
        }
  • use_alpha (bool): If True, adds an alpha channel to the prototype. This results in the prototype generation process returning semi-transparent prototypes, which allow it to express ambivalence about the values of pixels that don't change the model prediction.

    • Default: True
  • alpha_mask (bool): If True, applies a mask during prototype generation which encourages the resulting prototypes to be minimal, centered and concentrated. Experimental.

    • Default: False
  • alpha_only (bool): If True, during the prototype generation process, only an alpha channel is optimised. This results in generation prototypical shapes and textures only, with no colour information.

    • Default: False
  • baseline_init (int or str): How to initialise the input. A sensible option is the mean of your expected input data, if you know it. Use 'r' to initialise with random noise for more varied results with different random seeds.

    • Default: 0
  • diversity_weight (int): When generating multiple prototypes for the same class, we can apply a diversity objective to push for more varied inputs. The higher this number, the harder the optimisation process will push for different inputs. Experimental.

    • Default: 0
  • isolate_classes (list): If you'd like to isolate features for specific classes, rather than the top n, specify their indices here, e.g. [2,7,8].

    • Default: None
  • isolation_lr (float): How much to update the isolation mask at each step during the feature isolation process.

    • Default: 0.05
  • hf_weight (int): How much to penalise high-frequency patterns in the input. If you are generating very blurry and indistinct prototypes, decrease this. If you are getting very noisy prototypes, increase it. This depends on your model architecture and is hard for us to predict, so you might want to experiment. It's a bit like focussing binoculars. Best practice is to start with zero, and gradually increase.

    • Default: 1
  • isolation_hf_weight (int): How much to penalise high-frequency patterns in the feature isolation mask. See hf_weight.

    • Default: 1
  • input_dim (list): The dimensions of the input that your model expects.

    • Default: [224, 224, 3] if mode is "tf" else [3, 224, 224]
  • isolation (bool): Whether to isolate features for entangled classes. Set to False if you want prototypes only.

    • Default: True
  • log_freq (int): Interval at which to log images.

    • Default: 100
  • lr (float): How much to update the prototype at each step during the prototype generation process. This can be tuned, but in practice is to around 1% of the expected input range. E.g. if your model was trained on images in the range -1 to 1 (prior to any preprocessing function), 0.02 is a good place to start.

    • Default: 0.005
  • max_isolate_classes (int): How many classes to isolate features for, if isolate_classes is not provided.

    • Default: min(3, len(class_list))
  • max_steps (int): How many steps to run the prototype generation/feature isolation process for. If you get indistinct prototypes or isolations, try increasing this number.

    • Default: 1000
  • seed (int): Random seed for initialisation.

    • Default: 0
  • use_baseline (bool): Whether to generate an equidistant baseline input prior to the prototype generation process. It takes a bit longer, but setting this to True will ensure that all prototypes generated for a model are not biased by input initialisation.

    • Default: False
  • transform (str): If your model is trained on inputs with non-location-independent features – for example, brain scans, setting this to None will probably result in more sensible prototypes. VERY experimental. You can also experiment with the following options: ['s', 'm', 'l', 'xl'].

    • Default: xl
  • wandb_api_key (str): Provide your weights and biases API key here to enable logging results directly to your WandB dashboard.

    • Default: None
  • wandb_entity (str): If logging to WandB, make sure to provide your WandB entity name here.

    • Default: None

FAQ

What is a prototype?

Prototype generation is a global interpretability method. It provides insight into what a model has learned without looking at its performance on test data, by extracting learned features directly from the model itself. This is important, because there's no guarantee that your test data covers all potential failure modes. It's another way of understanding what your model has learned, and helping you to predict how it will behave in deployment, on unseen data.

So what is a prototype? For each class that your model has been trained to predict, we can generate an input that maximises the probability of that output – this is the model's prototype for that class. It's a representation of what the model 'thinks' that class is.

For example, if you have a model trained to diagnose cancer from biopsy slides, prototype generation can show you what the model has learned to look for - what it 'thinks' malignant cells look like. This means you can check to see if it's looking for the right stuff, and ensure that it hasn't learned any spurious correlations from its training data that would cause dangerous mistakes in deployment (e.g. looking for lab markings on the slides, rather than at cell morphology).

What is entanglement?

During the prototype generation process we extract a lot of information from the model, including which other classes share features with the class prototype that we're generating. Depending on your domain, some entanglement may be expected - for example, an animal classifier is likely to have significant entanglement between 'cat' and 'dog', because those classes share (at least) the 'fur' feature. However, entanglement - especially unexpected entanglement, that doesn't make sense in your domain - can also be a very good indicator of where your model is likely to make misclassifications in deployment.

What is feature isolation?

Feature isolation does what it says on the tin - it isolates which features in the input the model is using to make its prediction.

We can apply feature isolation in two ways:

    1. 0n a prototype that we've generated, to isolate which features are shared between entangled classes, and so help explain how those classes are entangled; and
    1. On some input data, to explain individual predictions that your model makes, by isolating the features in the input that correspond to the predicted class (similar to saliency mapping).

So, you can use it to both understand properties of your model as a whole, and to better understand the individual predictions it makes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

leap_ie-0.0.9-cp312-cp312-win_arm64.whl (631.2 kB view details)

Uploaded CPython 3.12Windows ARM64

leap_ie-0.0.9-cp312-cp312-win_amd64.whl (758.4 kB view details)

Uploaded CPython 3.12Windows x86-64

leap_ie-0.0.9-cp312-cp312-win32.whl (682.6 kB view details)

Uploaded CPython 3.12Windows x86

leap_ie-0.0.9-cp312-cp312-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp312-cp312-musllinux_1_1_i686.whl (4.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

leap_ie-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.9-cp312-cp312-macosx_10_9_universal2.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.9-cp311-cp311-win_arm64.whl (645.2 kB view details)

Uploaded CPython 3.11Windows ARM64

leap_ie-0.0.9-cp311-cp311-win_amd64.whl (768.4 kB view details)

Uploaded CPython 3.11Windows x86-64

leap_ie-0.0.9-cp311-cp311-win32.whl (697.2 kB view details)

Uploaded CPython 3.11Windows x86

leap_ie-0.0.9-cp311-cp311-musllinux_1_1_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

leap_ie-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.9-cp311-cp311-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.9-cp310-cp310-win_arm64.whl (639.9 kB view details)

Uploaded CPython 3.10Windows ARM64

leap_ie-0.0.9-cp310-cp310-win_amd64.whl (762.8 kB view details)

Uploaded CPython 3.10Windows x86-64

leap_ie-0.0.9-cp310-cp310-win32.whl (696.8 kB view details)

Uploaded CPython 3.10Windows x86

leap_ie-0.0.9-cp310-cp310-musllinux_1_1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp310-cp310-musllinux_1_1_i686.whl (4.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

leap_ie-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.9-cp310-cp310-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.9-cp39-cp39-win_arm64.whl (641.4 kB view details)

Uploaded CPython 3.9Windows ARM64

leap_ie-0.0.9-cp39-cp39-win_amd64.whl (764.4 kB view details)

Uploaded CPython 3.9Windows x86-64

leap_ie-0.0.9-cp39-cp39-win32.whl (698.4 kB view details)

Uploaded CPython 3.9Windows x86

leap_ie-0.0.9-cp39-cp39-musllinux_1_1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp39-cp39-musllinux_1_1_i686.whl (4.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

leap_ie-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.9-cp39-cp39-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.9-cp38-cp38-win_amd64.whl (777.5 kB view details)

Uploaded CPython 3.8Windows x86-64

leap_ie-0.0.9-cp38-cp38-win32.whl (707.4 kB view details)

Uploaded CPython 3.8Windows x86

leap_ie-0.0.9-cp38-cp38-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp38-cp38-musllinux_1_1_i686.whl (4.9 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

leap_ie-0.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.9-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

leap_ie-0.0.9-cp37-cp37m-win_amd64.whl (752.2 kB view details)

Uploaded CPython 3.7mWindows x86-64

leap_ie-0.0.9-cp37-cp37m-win32.whl (686.1 kB view details)

Uploaded CPython 3.7mWindows x86

leap_ie-0.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp37-cp37m-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

leap_ie-0.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

leap_ie-0.0.9-cp36-cp36m-win_amd64.whl (806.3 kB view details)

Uploaded CPython 3.6mWindows x86-64

leap_ie-0.0.9-cp36-cp36m-win32.whl (713.4 kB view details)

Uploaded CPython 3.6mWindows x86

leap_ie-0.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

leap_ie-0.0.9-cp36-cp36m-musllinux_1_1_i686.whl (3.6 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

leap_ie-0.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

leap_ie-0.0.9-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

File details

Details for the file leap_ie-0.0.9-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 631.2 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 59ca748d13552b3c73c5b5e574324d29cd99b302a09c808898e1dfe670ed4e49
MD5 7183d0c2d00a3cc206ac7979499e1330
BLAKE2b-256 f5fdb6e08f5d340af06b48f3396e75c09390dc700cd17cb0e5048d4fd61d901f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 758.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 777465ea30be0b5d373b9a65ba3b95f26a66f77c72c595a322facb52035f1b07
MD5 d7e2648190d1110957f2f531a36c9284
BLAKE2b-256 50bf84b9c0263a19621cce468652f7991a3d40d0f55b0283c6e7ee7c3dc5b672

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 682.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9a2312a13458f06866c3aee0a562fa11c54f8d3b89c0d8371185fad745a00d4e
MD5 678d558d2053e77133dd001f071f19d3
BLAKE2b-256 2f5040323d008048e61e23dc9639ded798fb1395a0ee124eaa24183342dd2cb6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0bf6fcaac069b69592c90398e0569a2603feb09f8ccf08409b34da5b1c70d0d8
MD5 c3ab8a3472bd678b1aa6f75771f7ec39
BLAKE2b-256 40c20370eca6f789153af3eacbd3dd8bda782f1340a3b4cb278984d364dbebb7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8d05576a2b4b96f84688f616903ad926453861cb7b462a41c7b7a0e0c964c9e8
MD5 2571115dc3eb62e59e68f2762e254f25
BLAKE2b-256 6b5a2599113f705b9fcde77a88e4f8b156e85b622d64ad10da00048bd7194c55

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b67e5fcaf6e5f8dc95f3db9cef3efdf0d5f37b369f7c3537137a7eac2ac3d5eb
MD5 18cc61b5eb9b59566dc9204fff6b1d9a
BLAKE2b-256 3c5ab1a5350e6bfbcacd1c7e44383eb87d63c098cbe5efef683ff2af297a14e7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a50b9e888b80d013ffc49ee42549209bad87cf7171a1bd47bc84137df3d30364
MD5 b497d368ca868fa6a7b03c5c6250610c
BLAKE2b-256 2e59029796254a40cfe5c64365703808c6033983b6df91b759b7dc3451c05e74

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1962eb7f887f269f57af0e2289851e75cbc76cecb294ecb478bd01c89a6acc7b
MD5 7da5f54204e47c315d609e03f28f1dac
BLAKE2b-256 eab47417d8a85c2b13f666a07d0a3c79d6397eb753d6465d32dca71706af9e39

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 645.2 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 f89321a41c9934c30e8fac55481d424de52a7591b3b31a26cda928b7205816f4
MD5 478bac0d1d5ff37980c804a270a64142
BLAKE2b-256 4dcb538e80087900dacb37f602dffa15bd9f524eeb404c5d19ddf80877a63873

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 768.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bb9e8420bee7cc259e21ba4d4ce03559c918c53710d5fb5a98c33ce3217127bd
MD5 872c6b1049c7843104455e1c9ce3779a
BLAKE2b-256 e50be9171d2be5b0bbb1afb0497ec9aa864fd19af9981bdb9b9f15b7cc34fd8c

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 697.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 94c00c2fb9cc4025cf60f2d619a542d0030e8a6ead6e9eb3ff8fb6855f5a0f4b
MD5 8437b4d99e77819185584ca652c0b07f
BLAKE2b-256 e9985b724ead4c39a036f269828632a466649f3cb7c4ac59b6bcf5532d3c20f5

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4bade94a3ce1a0d928ef95e9bb074e69a321fa713781c1fad828637db8014f71
MD5 fc127a3f1fe42432835205f8c053d183
BLAKE2b-256 54a5ad384bf7faf131cbf41316791de731435216357edf9396e378c3731d801a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ded6defdbd4e3e96c987191b31abc83df822b9d1b88c48b7e500d96c0f451786
MD5 189ddd2539abfd65fe609db06bdf6251
BLAKE2b-256 a4bf327b0e0fa3129928c3bd3a6d8fed5df7adbc58b110de232a8678d5462567

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf8e26bb1b0300399c2c90b9939a66582a4516c433d06ccbcd2c3266e03641ab
MD5 a63c696de382f0e1b23dc41bf325e1df
BLAKE2b-256 6f033c7ef7dd70b3b208cdd805cf0ab7c4ccdfb2cf23696a795f9beb06148897

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dee06c4e986f75154ae176beaaa512a7a5cb57545b879aeb8cdd458b69fdc499
MD5 c0260fcf998ca7a24bf2ed2e0bf4cf2b
BLAKE2b-256 b80ca515f1180fd3b46c058fc1c2d437bf1d3d875668d135552fd09a847a8b81

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7c1efcce14e58b004cc91bded8004b3d8598fd39c3a6cf9999069d5eb5adb247
MD5 d98f18b24f9867ae48db478de04088f0
BLAKE2b-256 6bd6f29dab9181584843106ca4788e726036b0cd292704abfb1c6be173b63e5a

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 639.9 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 551c2a03cf9895f2da29fbccc9999f26d8569812b6f53a7c0d38c0327d2bd80b
MD5 9625c6c1a0025a778d1811cd5129b18f
BLAKE2b-256 ae2e4a5f334e9b92550397c87e347d662f5164759270ef37189eea583ea4cec9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 762.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 30e472e4d21694cf296db58893ea0b9950bbd9baa9fa755caa025e680b202718
MD5 9aa45f50c3e19c812ebf534294e4da7b
BLAKE2b-256 8622685289fd517e63a79db288f5dbb1cce83eda717fea64f39eb3d104a3e2bc

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 696.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c4350c7fe88e267ab882cfa993c7fcc35e2217c6903efb9ce03ce6ca0a2e6cde
MD5 cf2213db967b37293e50ca096021f4f1
BLAKE2b-256 66275e28773b99fa33cf5fe401017df7bdfd6bb00b3567c76e9bf50f32e3bcde

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7481b8429bc3a50f73d2a8272fec5be1470796abcae7e98729f14883e54dff31
MD5 cd7f5b493d1e309a21308b605cba6f0f
BLAKE2b-256 16ad9830b29ec2bc45a0c23d6f67594ab53e597ab1c93521dcefa4b12c7ba2cb

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 26b560560c71e0cb0326c308edb8b47c7917986f0075fd23cbf7282334db9714
MD5 404727800f43301c79a6208fcd27ef7c
BLAKE2b-256 591630df4f28d6fc3a115210beb37ccbdd918bbd5173daca0ef0a35cce53072f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7253e130a845c5b8aedc81bc18c031f2063e6a4634ee26216f0f8ec2f64bef9
MD5 a67be432f7cdfcbc475a72eee3d96d87
BLAKE2b-256 cc9a1128239c0cd17c4534719badd636612e2d057c1fdb2deda01a001aac951e

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4164522353950d837b35ba894a131681bb7d87af56b15df7beabbf9996e6f086
MD5 0dbe4797cf622a07da0659459301d0d6
BLAKE2b-256 7a475cb314a058ec62c1bf2a711b64d65396f6235f1847d2e1a7083ee75db8e9

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 481610b5d2b548e7f5cbab39315c08794e7b8be693f33f0c63c4b2609b0b287c
MD5 1230c829bbc40b07e80c38ba680e0ee2
BLAKE2b-256 aaf067ffdd177f0e37f979fc292cb230d8ba97d73bedf6c758af93a0e32d6b31

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 641.4 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 94409dcf291b4b282b59af6e70269b5d7342cf154867588a94e509484207cd3c
MD5 5831bdc50ddca7e1f8bdf123b041d521
BLAKE2b-256 d670b0abc9cb33a9af4114be9275e0dba7e0d622bf7b2f6b1b0d007ffc013915

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 764.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9650bfb237ac80b0884b2ad310b16fee3a87d5d386b366c4cdd6b9a8aa4dd9db
MD5 ce4f4f283025a2656baf1261e50ac077
BLAKE2b-256 0fa8628542fccfb702a80576b442d0f81365a3a67a0f8e6464e2cee557b847a1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 698.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d4ca628acbd4c61f892b6ef7528d4b9847b0d95def3357f6aa5972d7ed366db7
MD5 5899f51654c1ed6e6defed3bf632c4ac
BLAKE2b-256 0a261c44815922a476a50981719052cc54a49b24379dbd76488564fd05fe761f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 19bd44a76704aa340f88783acdb5cd1e85e027a7a9580881de808b72719f6fb9
MD5 d49848812f8d35be8d71cff2eabef5df
BLAKE2b-256 878b99cfa0f925a83825ab2c33ec9cf0f695192cdbc9a43dcf5d1271dadefcff

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 83427af2da08ee31adc742e5c29d35d6ba41f5d0aa96f092aea1391305fe5362
MD5 71160bac86275a31405c6387ddf7b049
BLAKE2b-256 88eaa45bf1d736e323049e60a3b716764664a4063a82faefc2bdc75ed705f9e7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ff1351ad5171f6d6dbf39c4427c0f5c8766580519e3db426b742e15ff5298e5
MD5 3ef200dc91c3698a5e72bbd3e19ef8c4
BLAKE2b-256 7c4d3f23258c0a63238ed3377404ce30855f3f8ccceb3e3745cc602d650e0d58

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 95822baeae7993af2b06baae2fdfb435458ef7589b87a282bd0ecb2ec8ebcb67
MD5 b1232c7c0e8abfe1c3f4fadea97acab1
BLAKE2b-256 49fbb45ce5286885040f01a633b2613ea7e9b649ec1cc810565c002e434b577b

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2688c4b5dbc4306ad524979cdb63bb1d97dda7d6c5ee62a0f45c9f35e9dc052d
MD5 66dacf7b8d89efc3ca931bdf3c9b83c9
BLAKE2b-256 60296568a789e26b96763ac29658925b126380c81948b42f066a81e3f485e4d7

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 777.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76bc8a4e8aba47e1d1de060b977654e3ae5b2d002f05dee9cb3cf47bc62e415c
MD5 ad5d9e597a8f404d36569d3fc7aa9691
BLAKE2b-256 24909da90e73810c4292c44711597fef873ef8022c83d26e30ba081797455726

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp38-cp38-win32.whl
  • Upload date:
  • Size: 707.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 782ddc2456dc74687f71123c1233dfc12a6af52c70e81d335ca5690667116e04
MD5 a761a8c58f8adc352a8eb00763f5f8b2
BLAKE2b-256 2149f34d4f61e615330de065bad52a02184e13afe6282907b424e4dba68fb552

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 66ae4836241a0814792a53de9fa307682d86dafd480b1c53f085e4a385bdbd4a
MD5 78b6445dc062b4e07e61ef609465b66a
BLAKE2b-256 ea64cfeb8907d5a1cd7728a003f9af36e5fc249a954ed8f62f751bce6df9209f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e84811b0a83b2a5e979be2141de228ee816b4908d1e1fc4d2a07b41d875b43f3
MD5 c846623960c4e71cbb57a6f81f377cc8
BLAKE2b-256 f577f0740eca9e38efefa21344ec3c35fa7c03fdb96638594fa34b0811356b8d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 accdf371ebc03e263f3961c8655f81594467d4a208a97a082caef1edd7035b2e
MD5 bd779bf997d1e1b373db776ac1cd66cb
BLAKE2b-256 1a4615ffac25ca4ccaf76b1a7185b2deb775e2139da249c89de3ed013a294f23

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e6517c13011fbbe4c6dfd9680963c271a3dae47c5e32fb2f34c044bb88e28f7c
MD5 3b4fc1b2d1a2be9476d4ccb7b8df8aef
BLAKE2b-256 fcba29cdd67ed89d0e4696503d0e70ed5518572cf1068dde834a3d4a0a1a06d6

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3a3b7aea6d231766cb9c41cc0e3199d79702a510dc3e95af106a389f638f283b
MD5 e8052a97ed9945ff641925bb39bebbd8
BLAKE2b-256 ae27e941f0f8f0881644ac1e82788e5337fa5349e319ebc21cff954726fd85a1

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 752.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 15e8bce9793715f1d00d2cad87fabd3b7689296cdad6d5503deba7c37bfc3d1e
MD5 a86aec4e1e8630f82bf7f48ff30b7f47
BLAKE2b-256 9dab9972045c94184d5163be3c2ae529a88caf32792cefc26e49d76fd7d331bf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp37-cp37m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 686.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3f771697ea148d2177d6bfe134bbe545313c53fdfe65d28345fb855032ca7f19
MD5 3d055dcff5143a9a9bcd5d081ea944c6
BLAKE2b-256 cee3fd11e58a6be5c2ab99d8be5b53b752ab47f99607b3de0616a28cfa0f928d

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4a602043a3e39d74520034eb7ba956f2ab18a01c2bc694a043ab20a602143a86
MD5 a3d2b55a61cfc123f192e62298821b89
BLAKE2b-256 a2031e463a87d81f53c6a8f182462e9598eb540d5c4e821b2b18b3284fb9e3e0

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d12ef6fb07c3595a4cde468a2274bcd0058b2b7aa0dec550895c8bb52aa49e7c
MD5 fe3d8c987aef955182c452504ae0cc7c
BLAKE2b-256 b92ce7043cc26a74639fd13aeb24317862eb917e361648c25c1a217ac648b461

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 190f7f87bac796eef4e389ef365d2f64d7de75cd72bf0ab5857353f239191c8b
MD5 e3de4176438dc96acf81a956d9543c6e
BLAKE2b-256 30825c3e5023b185e4e2b503610c109aaaa94f5dafdb07bd8a2cd5a159eb6acf

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ea710db1181122717996c9441580079e416c973b0d1f84542989997b7817319
MD5 29ae0c0eca1fbd341b60f924dd7d7bff
BLAKE2b-256 5f552b967cd7ede510aa18b316765a90aa28ee853a12ef4f0f3cbfb6894cd061

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 806.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f459d377ca9ae8ce8073ede4129e84c34b5a103fbff5ef894ee7be17eaf7fa8f
MD5 d566b4a888bae640e174238620a94683
BLAKE2b-256 d83f15557fca06fd02dd90d08f2b87bb1afb42be0f69e2173399c4a4a08c7b07

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp36-cp36m-win32.whl.

File metadata

  • Download URL: leap_ie-0.0.9-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 713.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for leap_ie-0.0.9-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 514d3a01ef8fd1c0afa7e6a73c2d285d03a8a8c5186b3c569793b37446287937
MD5 8d4d4dcec3dc39b731d310715b3ce1da
BLAKE2b-256 d2115084e6255735bfaeb4e365318b4852fe713526ef85276595c3764613b158

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a10d03b6d0df5b186e47b6ac9e7314dc4ee12e13f40a7d24bb2a9d38fa153fb5
MD5 84b6d61922522dd4f5e52c7fc92572d2
BLAKE2b-256 024825d7bd7437d26c2843b89f95643f8d76eb2af24a82f1afd923621e480110

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7899deafcf07573998b65dd1cd5e4a69b583019511a2da09d2471082b693840f
MD5 9b9e95ffb11e259ce07d27b640f886dc
BLAKE2b-256 1ffe6a285b830b4a26dad959f88cf2266d6bda0fdf57e1b1c3cd2caf5e1f4b0f

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 545155ccd95a1167a3aa3cf0971713dfeb1cb90c345e037a9f42b37bdd43efe9
MD5 5302591910f832a8c08e2bfd3c9f8a6e
BLAKE2b-256 4b4e29a72fba078d2aa4f1c443eb1307a64dea891e8c256e3275235f435ec365

See more details on using hashes here.

File details

Details for the file leap_ie-0.0.9-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for leap_ie-0.0.9-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 23ddaa19f81e7f781df11627583e6eed2e5fcc4e47936ac9e56d4246113cc3e7
MD5 0f9cb6e42465f33a5da56b67d91579a8
BLAKE2b-256 065ae86997a6166e36f0ee915823af6713240c2b3c30e778eae32bae624d37bd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page