Skip to main content

This package may be used to get the list of Leetcode questions and their topic and company tags, difficulty, question body (including test cases, constraints, hints), and code stubs in any of the available programming languages.

Project description

Leetcode Questions Scraper

Python application

This package may be used to get the list of Leetcode questions and their topic and company tags, difficulty, question body (including test cases, constraints, hints), and code stubs in any of the available programming languages.

Usage

Import the relevant classes from the leetcode package:

from leetcode.GetQuestionsList import GetQuestionsList
from leetcode.GetQuestionInfo import GetQuestionInfo
from leetcode.utils import combine_list_and_info, get_all_questions_body
import pandas as pd
from tqdm import tqdm
import pickle
import numpy as np

Get the list of questions, companies, topic tags, categories using the GetQuestionsList class:

ls = GetQuestionsList().scrape() # Scrape the list of questions
ls.to_csv(directory_path="../data/") # Save the scraped tables to a directory

Warning The default ALL_JSON_URL in the GetQuestionsList class might be out-of-date. Please update it by going to https://leetcode.com/problemset/all/ and exploring the Networks tab for a query returning all.json.

Query individual question's information such as the body, test cases, constraints, hints, code stubs, and company tags using the GetQuestionInfo class:

# This table can be generated using the previous commnd
questions_info = pd.read_csv("../data/questions.csv")

# Scrape question body
questions_body_list = get_all_questions_body(
    questions_info["titleSlug"].tolist(),
    questions_info["paidOnly"].tolist(),
    filename="../data/questionBody.pickle",
)

# Save to a pandas dataframe
questions_body = pd.DataFrame(
    questions_body_list
).drop(columns=["titleSlug"])
questions_body["QID"] = questions_body["QID"].astype(int)

Note The above code stub is time consuming (10+ minutes) since there are 2500+ questions.

Create a new dataframe with all the questions and their metadata and body information.

questions = combine_list_and_info(info_df = questions_body, list_df=ls.questions)

Create a PostgreSQL database using the SQL dump and insert data using sqlalchemy.

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from dotenv import dotenv_values

config = dotenv_values("../.env")
engine = create_engine(
    f"postgresql://{config['SUPABASE_USERNAME']}:{config['SUPABASE_PASSWORD']}@{config['SUPABASE_HOSTNAME']}:{config['SUPABASE_PORT']}/{config['SUPABASE_DBNAME']}",
    echo=True,
)
questions.to_sql(
    con=engine, name="questions", if_exists="append", index=False
)
ls.topicTags.to_sql(
    con=engine, name="topic_tags", if_exists="append", index=False
)
ls.categories.to_sql(
    con=engine, name="categories", if_exists="append", index=False
)
ls.companies.to_sql(
    con=engine, name="companies", if_exists="append", index=False
)
ls.questionTopics.to_sql(
    con=engine, name="question_topics", if_exists="append", index=True, index_label="id"
)
ls.questionCategory.to_sql(
    con=engine,
    name="question_category",
    if_exists="append",
    index=True,
    index_label="id",
)

Use the queried_questions_list PostgreSQL function (defined in the SQL dump) to query for questions containy query terms:

select * from queried_questions_list('<query term>');

Use the all_questions_list PostgreSQL function (defined in the SQL dump) to query for all the questions in the database:

select * from all_questions_list();

Use the get_similar_questions PostgreSQL function (defined in the SQL dump) to query for all questions similar to a given question:

select * from get_similar_questions(<QuestionID>);

Use the extract_solutions method to extract solution code stubs from your python script. Note that the solution method should be a part of a class named Solution (see here for an example):

# Returns a dict of the form {QuestionID: solutions}
solutions = extract_solutions(filename=<path_to_python_script>)

Use the upload_solutions method to upload the extracted solution code stubs from your python script to the PosgreSQL database.

upload_solutions(engine=<sqlalchemy_engine>, row_id = <row_id_in_table>, solutions: <solutions_dict>)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leetscrape-0.1.0.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

leetscrape-0.1.0-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file leetscrape-0.1.0.tar.gz.

File metadata

  • Download URL: leetscrape-0.1.0.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.7 Windows/10

File hashes

Hashes for leetscrape-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1dad52ff81ac63fd1d79805f10f209d2cb767195673e221833e04b765aa5d370
MD5 afbbec597c946c0285356fc8050fb694
BLAKE2b-256 6e3df6f6a786e2fb0a68f5b5af2cd1043cc4080564a101b0a754c95ce3f0865e

See more details on using hashes here.

File details

Details for the file leetscrape-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: leetscrape-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.7 Windows/10

File hashes

Hashes for leetscrape-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fd690ff2ebca403dd3adee7f7792e9e015ff553b103795bdf979545e5f4646f7
MD5 f2b1d2d80bd242e661424745616b8ccd
BLAKE2b-256 19d5d52a08af9ef837087aaa9e0b7f6c58996b04fb20b1df52b76acc83c2e1af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page