Skip to main content

Introducing LeetScrape - a powerful and efficient Python package designed to scrape problem statements and their topic and company tags, difficulty, test cases, hints, and code stubs from LeetCode.com. Easily download and save LeetCode problems to your local machine, making it convenient for offline practice and studying. It is perfect for anyone preparing for coding interviews. With the LeetScrape, you can boost your coding skills and improve your chances of landing your dream job.

Project description

LeetScrape

Python application deploy-docs PYPI

Introducing the LeetScrape - a powerful and efficient Python package designed to scrape problem statements and basic test cases from LeetCode.com. With this package, you can easily download and save LeetCode problems to your local machine, making it convenient for offline practice and studying. It is perfect for software engineers and students preparing for coding interviews. The package is lightweight, easy to use and can be integrated with other tools and IDEs. With the LeetScrape, you can boost your coding skills and improve your chances of landing your dream job.

Use this package to get the list of Leetcode questions, their topic and company tags, difficulty, question body (including test cases, constraints, hints), and code stubs in any of the available programming languages.

Detailed documentation available here.

Installation

Start by installing the package from pip or conda:

pip install leetscrape
# or using conda:
conda install leetscrape
# or using poetry:
poetry add leetscrape

Usage

Command Line

Run the leetscrape command to get a code stub and a pytest test file for a given Leetcode question:

$ leetscrape --titleSlug two-sum --qid 1

At least one of the two arguments is required.

  • titleSlug is the slug of the leetcode question that is in the url of the question, and
  • qid is the number associated with the question.

Other classes

Import the relevant classes from the package:

from leetscrape.GetQuestionsList import GetQuestionsList
from leetscrape.GetQuestionInfo import GetQuestionInfo
from leetscrape.utils import combine_list_and_info, get_all_questions_body

Scrape the list of problems

Get the list of questions, companies, topic tags, categories using the GetQuestionsList class:

ls = GetQuestionsList()
ls.scrape() # Scrape the list of questions
ls.to_csv(directory_path="../data/") # Save the scraped tables to a directory

Get Question statement and other information

Query individual question's information such as the body, test cases, constraints, hints, code stubs, and company tags using the GetQuestionInfo class:

# This table can be generated using the previous commnd
questions_info = pd.read_csv("../data/questions.csv")

# Scrape question body
questions_body_list = get_all_questions_body(
    questions_info["titleSlug"].tolist(),
    questions_info["paidOnly"].tolist(),
    save_to="../data/questionBody.pickle",
)

# Save to a pandas dataframe
questions_body = pd.DataFrame(
    questions_body_list
).drop(columns=["titleSlug"])
questions_body["QID"] = questions_body["QID"].astype(int)

Note The above code stub is time consuming (10+ minutes) since there are 2500+ questions.

Create a new dataframe with all the questions and their metadata and body information.

questions = combine_list_and_info(
    info_df = questions_body, list_df=ls.questions, save_to="../data/all.json"
)

Upload scraped data to a Database

Create a PostgreSQL database using the SQL dump and insert data using sqlalchemy.

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine("<database_connection_string>", echo=True)
questions.to_sql(con=engine, name="questions", if_exists="append", index=False)
# Repeat the same for tables ls.topicTags, ls.categories,
# ls.companies, # ls.questionTopics, and ls.questionCategory

Use the queried_questions_list PostgreSQL function (defined in the SQL dump) to query for questions containy query terms:

select * from queried_questions_list('<query term>');

Use the all_questions_list PostgreSQL function (defined in the SQL dump) to query for all the questions in the database:

select * from all_questions_list();

Use the get_similar_questions PostgreSQL function (defined in the SQL dump) to query for all questions similar to a given question:

select * from get_similar_questions(<QuestionID>);

Extract solutions from a .py file

You may want to extract solutions from a .py files to upload them to a database. You can do so using the ExtractSolutions class.

from leetscrape.ExtractSolutions import extract
# Returns a dict of the form {QuestionID: solutions}
solutions = extract(filename=<path_to_python_script>)

Use the upload_solutions method to upload the extracted solution code stubs from your python script to the PosgreSQL database.

from leetscrape.ExtractSolutions import upload_solutions
upload_solutions(engine=<sqlalchemy_engine>, row_id = <row_id_in_table>, solutions: <solutions_dict>)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leetscrape-0.1.9.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

leetscrape-0.1.9-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file leetscrape-0.1.9.tar.gz.

File metadata

  • Download URL: leetscrape-0.1.9.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.7 Windows/10

File hashes

Hashes for leetscrape-0.1.9.tar.gz
Algorithm Hash digest
SHA256 fb62d5adfe37eb693ac67c511201f93946182a5ceec115eb9441c727d1556e7d
MD5 0dd3945c0daa26a568eeee56527e1a99
BLAKE2b-256 0bb477972c5dc54987c9be3de848fc24274bdac2fbd917367b2dc48b49733178

See more details on using hashes here.

File details

Details for the file leetscrape-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: leetscrape-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.7 Windows/10

File hashes

Hashes for leetscrape-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 4b9bc490787a725803122aedbd0ef5014cb910344414f3cad9d6a5097cc1be7e
MD5 1c3dd53bee80cb2b6209bd3614cfc3da
BLAKE2b-256 11cf465da572a39ad97a0efe35ac7f01cfafa7acc63e7d74903c05477276bdd1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page