Skip to main content

Numerical integration, quadrature for various domains

Project description

⚠️ This is a redistribution of quadpy v0.16.10 created by Nico Schlömer under its original license of GNU General Public License (GPL) version 3. The original quadpy source code has been removed from GitHub and subsequent versions released as a closed-source Python Wheel with a paid license. This redistribution complies with the original GPLv3 license. The latest version of quadpy can be found here and installed from PyPI with pip install quadpy.

Additionally, as quadpy depends on ndim and orthopy which are also no longer available as open-source repositories, the source code for these packages has been included in this repository under the same GPLv3 license. The source code can be found in the src/ndim and src/orthopy directories, respectively. You can find stand-alone forks of these packages here and here.

quadpy

Your one-stop shop for numerical integration in Python.

PyPi Version PyPI pyversions DOI GitHub stars PyPi downloads

awesome

codecov Code style: black

More than 1500 numerical integration schemes for line segments, circles, disks, triangles, quadrilaterals, spheres, balls, tetrahedra, hexahedra, wedges, pyramids, n-spheres, n-balls, n-cubes, n-simplices, the 1D half-space with weight functions exp(-r), the 2D space with weight functions exp(-r), the 3D space with weight functions exp(-r), the nD space with weight functions exp(-r), the 1D space with weight functions exp(-r2), the 2D space with weight functions exp(-r2), the 3D space with weight functions exp(-r2), and the nD space with weight functions exp(-r2), for fast integration of real-, complex-, and vector-valued functions.

For example, to numerically integrate any function over any given interval, install quadpy from the Python Package Index with

pip install legacy-quadpy

and do

import numpy as np
import quadpy


def f(x):
    return np.sin(x) - x


val, err = quadpy.quad(f, 0.0, 6.0)

This is like scipy with the addition that quadpy handles complex-, vector-, matrix-valued integrands, and "intervals" in spaces of arbitrary dimension.

To integrate over a triangle, do

import numpy as np
import quadpy


def f(x):
    return np.sin(x[0]) * np.sin(x[1])


triangle = np.array([[0.0, 0.0], [1.0, 0.0], [0.7, 0.5]])

# get a "good" scheme of degree 10
scheme = quadpy.t2.get_good_scheme(10)
val = scheme.integrate(f, triangle)

Most domains have get_good_scheme(degree). If you would like to use a particular scheme, you can pick one from the dictionary quadpy.t2.schemes.

All schemes have

scheme.points
scheme.weights
scheme.degree
scheme.source
scheme.test_tolerance

scheme.show()
scheme.integrate(
    # ...
)

and many have

scheme.points_symbolic
scheme.weights_symbolic

quadpy is fully vectorized, so if you like to compute the integral of a function on many domains at once, you can provide them all in one integrate() call, e.g.,

# shape (3, 5, 2), i.e., (corners, num_triangles, xy_coords)
triangles = np.stack(
    [
        [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]],
        [[1.2, 0.6], [1.3, 0.7], [1.4, 0.8]],
        [[26.0, 31.0], [24.0, 27.0], [33.0, 28]],
        [[0.1, 0.3], [0.4, 0.4], [0.7, 0.1]],
        [[8.6, 6.0], [9.4, 5.6], [7.5, 7.4]],
    ],
    axis=-2,
)

The same goes for functions with vectorized output, e.g.,

def f(x):
    return [np.sin(x[0]), np.sin(x[1])]

More examples under test/examples_test.py.

Read more about the dimensionality of the input/output arrays in the wiki.

Advanced topics:

Schemes

Line segment (C1)

See here for how to generate Gauss formulas for your own weight functions.

Example:

import numpy as np
import quadpy

scheme = quadpy.c1.gauss_patterson(5)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x), [0.0, 1.0])

1D half-space with weight function exp(-r) (E1r)

Example:

import quadpy

scheme = quadpy.e1r.gauss_laguerre(5, alpha=0)
scheme.show()
val = scheme.integrate(lambda x: x ** 2)

1D space with weight function exp(-r2) (E1r2)

Example:

import quadpy

scheme = quadpy.e1r2.gauss_hermite(5)
scheme.show()
val = scheme.integrate(lambda x: x ** 2)

Circle (U2)

  • Krylov (1959, arbitrary degree)

Example:

import numpy as np
import quadpy

scheme = quadpy.u2.get_good_scheme(7)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0], 1.0)

Triangle (T2)

Apart from the classical centroid, vertex, and seven-point schemes we have

Example:

import numpy as np
import quadpy

scheme = quadpy.t2.get_good_scheme(12)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [[0.0, 0.0], [1.0, 0.0], [0.5, 0.7]])

Disk (S2)

Example:

import numpy as np
import quadpy

scheme = quadpy.s2.get_good_scheme(6)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0], 1.0)

Quadrilateral (C2)

Example:

import numpy as np
import quadpy

scheme = quadpy.c2.get_good_scheme(7)
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [[[0.0, 0.0], [1.0, 0.0]], [[0.0, 1.0], [1.0, 1.0]]],
)

The points are specified in an array of shape (2, 2, ...) such that arr[0][0] is the lower left corner, arr[1][1] the upper right. If your c2 has its sides aligned with the coordinate axes, you can use the convenience function

quadpy.c2.rectangle_points([x0, x1], [y0, y1])

to generate the array.

2D space with weight function exp(-r) (E2r)

Example:

import quadpy

scheme = quadpy.e2r.get_good_scheme(5)
scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

2D space with weight function exp(-r2) (E2r2)

Example:

import quadpy

scheme = quadpy.e2r2.get_good_scheme(3)
scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

Sphere (U3)

Example:

import numpy as np
import quadpy

scheme = quadpy.u3.get_good_scheme(19)
# scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0, 0.0], 1.0)

Integration on the sphere can also be done for functions defined in spherical coordinates:

import numpy as np
import quadpy


def f(theta_phi):
    theta, phi = theta_phi
    return np.sin(phi) ** 2 * np.sin(theta)


scheme = quadpy.u3.get_good_scheme(19)
val = scheme.integrate_spherical(f)

Ball (S3)

Example:

import numpy as np
import quadpy

scheme = quadpy.s3.get_good_scheme(4)
# scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0, 0.0], 1.0)

Tetrahedron (T3)

Example:

import numpy as np
import quadpy

scheme = quadpy.t3.get_good_scheme(5)
# scheme.show()
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.5, 0.7, 0.0], [0.3, 0.9, 1.0]],
)

Hexahedron (C3)

Example:

import numpy as np
import quadpy

scheme = quadpy.c3.product(quadpy.c1.newton_cotes_closed(3))
# scheme.show()
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    quadpy.c3.cube_points([0.0, 1.0], [-0.3, 0.4], [1.0, 2.1]),
)

Pyramid (P3)

  • Felippa (2004, 9 schemes up to degree 5)

Example:

import numpy as np
import quadpy

scheme = quadpy.p3.felippa_5()

val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [
        [0.0, 0.0, 0.0],
        [1.0, 0.0, 0.0],
        [0.5, 0.7, 0.0],
        [0.3, 0.9, 0.0],
        [0.0, 0.1, 1.0],
    ],
)

Wedge (W3)

Example:

import numpy as np
import quadpy

scheme = quadpy.w3.felippa_3()
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [
        [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.5, 0.7, 0.0]],
        [[0.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.5, 0.7, 1.0]],
    ],
)

3D space with weight function exp(-r) (E3r)

Example:

import quadpy

scheme = quadpy.e3r.get_good_scheme(5)
# scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

3D space with weight function exp(-r2) (E3r2)

Example:

import quadpy

scheme = quadpy.e3r2.get_good_scheme(6)
# scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

n-Simplex (Tn)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.tn.grundmann_moeller(dim, 3)
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    np.array(
        [
            [0.0, 0.0, 0.0, 0.0],
            [1.0, 2.0, 0.0, 0.0],
            [0.0, 1.0, 0.0, 0.0],
            [0.0, 3.0, 1.0, 0.0],
            [0.0, 0.0, 4.0, 1.0],
        ]
    ),
)

n-Sphere (Un)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.un.dobrodeev_1978(dim)
val = scheme.integrate(lambda x: np.exp(x[0]), np.zeros(dim), 1.0)

n-Ball (Sn)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.sn.dobrodeev_1970(dim)
val = scheme.integrate(lambda x: np.exp(x[0]), np.zeros(dim), 1.0)

n-Cube (Cn)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.cn.stroud_cn_3_3(dim)
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    quadpy.cn.ncube_points([0.0, 1.0], [0.1, 0.9], [-1.0, 1.0], [-1.0, -0.5]),
)

nD space with weight function exp(-r) (Enr)

Example:

import quadpy

dim = 4
scheme = quadpy.enr.stroud_enr_5_4(dim)
val = scheme.integrate(lambda x: x[0] ** 2)

nD space with weight function exp(-r2) (Enr2)

Example:

import quadpy

dim = 4
scheme = quadpy.enr2.stroud_enr2_5_2(dim)
val = scheme.integrate(lambda x: x[0] ** 2)

Installation

quadpy is available from the Python Package Index, so with

pip install quadpy

you can install.

Testing

To run the tests, check out this repository and type

MPLBACKEND=Agg pytest

License

This software is published under the GPLv3 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

legacy-quadpy-0.16.10.tar.gz (1.1 MB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page