Skip to main content

Pre processing tools for documents with legal content.

Project description

Legal Pre-processing

Pre processing tools for documents with legal content. Authors: Daniel Henrique Arruda Boeing and Israel Oliveira.

Python 3.7 Python 3.8 Python 3.9

Usage:

Donwload the JSON files that could be used as examples.

$ mkdir -p data_dicts && cd data_dicts

$ wget https://gitlab.com/israel.oliveira.softplan/legal-pre-processing/-/raw/master/data/LegalRegExPatterns.json

$ wget https://gitlab.com/israel.oliveira.softplan/legal-pre-processing/-/raw/master/data/LegalStopwords.json

$ wget https://gitlab.com/israel.oliveira.softplan/legal-pre-processing/-/raw/master/data/TesauroRevisado.json

Load helper class and laod dictionaries.

>>> from  legal_pre_processing.utils import LoadDicts
>>>
>>> dicts = LoadDicts('legal_dicts/')
>>> dicts.List
['LegalRegExPatterns', 'TesauroRevisado', 'LegalStopwords']

Load the class LegalPreprocess and and instantiate it.

>>> from legal_pre_processing.legal_pre_processing import LegalPreprocess
>>>
>>> model = LegalPreprocess(domain_stopwords=dicts.LegalStopwords, tesauro=dicts.TesauroRevisado, regex_pattern=dicts.LegalRegExPatterns)

Load a PDF file with PyMuPDF (or other extractor) and do some tests:

>>> import fitz
>>>
>>> doc = fitz.open('some_pdf_file_with_legal_content.pdf')
>>> page = doc[page_number-1].get_text()
>>> print(page)
"...Com a concordância das partes foi utilizada prova emprestada em relação aos depoimentos de algumas testemunhas de defesa (decisões de 28/10/2016,  07/11/2016, de 10/11/2016 e de 09/02/2017, nos eventos 114, 175 e 199, e depoimentos nos eventos 187, 200, 287 e 513)...."
>>> page_preprocess = model.ProcessText(page)
>>> print(page_preprocess)
"...concordancia utilizada PROVA_EMPRESTADA relacao depoimentos algumas testemunhas defesa decisoes eventos depoimentos eventos..."

Use heuristics available:

>>> from heuristics import Heuristics
>>> path_pdf = 'example-of-rotated-text-in-latex.pdf'
>>> h = Heuristics(path_pdf)
>>> h.set_all_heuristics()
>>> txt = h.Extract()

Class Heuristics, input parameters:

pdf_path : str
    Path to PDF file.
th_font : float, optional
    Threshold (between 0 and 1) for filter outliers of font types.
    (default is 0.9)
th_size : float, optional
    Threshold (between 0 and 1) for filter outliers of font sizes.
    (default is 0.9)
filter_font_by_cum : bool, optional
    Filters outliers by the accumulated sum, for font types.
    If False, filter by indivual counting. (default is True)
filter_size_by_cum : bool, optional
    Filters outliers by the accumulated sum, for font sizes.
    If False, filter by indivual counting. (default is True)
  • Remove duplicated phrases:
>>> h.set_filter_duplicated_phrases()
  • Let only horizontal text:
>>> h.set_let_horinzontal_text()
  • Remove text with more rare used font types:
>>> h.set_filter_outlier_font_types()
  • Remove text with more rare used font sizes:
>>> h.set_filter_outlier_font_sizes()

TODO:

  • Update README with a project's image and shields (see random-forest-mc).
  • Active LGTM (see random-forest-mc).

Refences:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

legal-pre-processing-0.3.2.tar.gz (9.2 kB view details)

Uploaded Source

Built Distribution

legal_pre_processing-0.3.2-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page