Skip to main content

Leibniz is a package providing facilities to express learnable differential equations based on PyTorch

Project description

Leibniz

Build Status

Leibniz is a python package which provide facilities to express learnable differential equations with PyTorch

Install

pip install leibniz

How to use

As an example we solve a very simple advection problem, a box-shaped material transported by a constant steady wind.

moving box

import torch as th
import leibniz as lbnz

from leibniz.core3d.gridsys.regular3 import RegularGrid
from leibniz.diffeq import odeint as odeint


def binary(tensor):
    return th.where(tensor > lbnz.zero, lbnz.one, lbnz.zero)

# setup grid system
lbnz.bind(RegularGrid(
    basis='x,y,z',
    W=51, L=151, H=51,
    east=16.0, west=1.0,
    north=6.0, south=1.0,
    upper=6.0, lower=1.0
))
lbnz.use('x,y,z') # use xyz coordinate

# giving a material field as a box 
fld = binary((lbnz.x - 8) * (9 - lbnz.x)) * \
      binary((lbnz.y - 3) * (4 - lbnz.y)) * \
      binary((lbnz.z - 3) * (4 - lbnz.z))

# construct a constant steady wind
wind = lbnz.one, lbnz.zero, lbnz.zero

# transport value by wind
def derivitive(t, clouds):
    return - lbnz.upwind(wind, clouds)

# integrate the system with rk4
pred = odeint(derivitive, fld, th.arange(0, 7, 1 / 100), method='rk4')

How to release

python3 setup.py sdist bdist_wheel
python3 -m twine upload dist/*

git tag va.b.c master
git push origin va.b.c

Contributors

Acknowledge

We included source code with minor changes from torchdiffeq by Ricky Chen, because of two purpose:

  1. package torchdiffeq is not indexed by pypi
  2. package torchdiffeq is very convenient and mandatory

All our contribution is based on Ricky's Neural ODE paper (NIPS 2018) and his package.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leibniz-0.0.14.tar.gz (35.3 kB view hashes)

Uploaded Source

Built Distribution

leibniz-0.0.14-py2.py3-none-any.whl (49.0 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page