Skip to main content

Read, stitch and compress Leica LAS MatrixS Screener experiments

Project description

build-status-image pypi-version wheel


This is a python module for interfacing with Leica LAS AF/X Matrix Screener experiments.

The module can be used to:

  • stitch wells from an experiment exported with the LAS AF Data Exporter
  • batch compress images lossless
  • programmatically select slides/wells/fields/images given by attributes like
    • slide (S)
    • well position (U, V)
    • field position (X, Y)
    • z-stack position (Z)
    • channel (C)


  • Access experiment as a python object
  • Compress to PNGs without loosing precision, metadata or colormap
  • ImageJ stitching (Fiji is installed via fijibin)


Install using pip

pip install leicaexperiment


stitch experiment

from leicaexperiment import Experiment

# path should contain AditionalData and slide--S*
experiment = Experiment('path/to/experiment')

# if path is omitted, experiment path is used for output files
stitched_images = experiment.stitch('/path/to/output/files/')

stitch specific well

from leicaexperiment import Experiment

# path should contain AditionalData and slide--S*
stitched_images = experiment.stitch('/path/to/well')

do stuff on all images

from leicaexperiment import Experiment

experiment = Experiment('path/to/experiment--')

for image in experiment.images:
    do stuff...

do stuff on specific wells/fields

from leicaexperiment import attribute

# select specific parts
selected_wells = [well for well in experiment.wells if 'U00' in well]
for well in selected_wells:
    do stuff...

def condition(path):
    x_above = attribute(path, 'X') > 1
    x_below = attribute(path, 'X') < 5
    return x_above and x_below

selected_fields = [field for field in experiment.fields if condition(field)]
for field in selected_fields:
    do stuff..

subtract data

from leicaexperiment import attribute

# get all channels
channels = [attribute(image, 'C') for image in experiment.images]
min_ch, max_ch = min(channels), max(channels)

batch lossless compress of experiment

from leicaexperiment import Experiment, compress

e = Experiment('/path/to/experiment')
pngs = compress(e.images)

API reference

API reference is at


Install dependencies and link development version of leicaexperiment to pip:

git clone
cd leicaexperiment
pip install -r dev-requirements.txt

run test


extra output, jump into pdb upon error

DEBUG=leicaexperiment tox -- --pdb -s

build api reference

make docs

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for leicaexperiment, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size leicaexperiment-0.0.2-py2.py3-none-any.whl (10.8 kB) File type Wheel Python version 3.4 Upload date Hashes View
Filename, size leicaexperiment-0.0.2.tar.gz (9.4 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page